Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"anneal" Definitions
  1. anneal something to heat metal or glass and allow it to cool slowly, in order to make it softer and easier to shape (= more ductile)

131 Sentences With "anneal"

How to use anneal in a sentence? Find typical usage patterns (collocations)/phrases/context for "anneal" and check conjugation/comparative form for "anneal". Mastering all the usages of "anneal" from sentence examples published by news publications.

The MOAB strike, rather than snuffing out Afghan resistance, may instead anneal discordant Afghan insurgent groups together against a common enemy.
The trick, he said, is to anneal the metal, treating it with heat so that it becomes strong enough to withstand stamping to become a can body.
TDS will be able to take advantage of a new anneal offsets control feature to tune individual qubits, improving the value of the chips for detecting security anomalies, among other things.
"I am truly excited by this latest advance from our lab, which allows one to 3D print and anneal flexible metal electrodes and complex architectures 'on-the-fly,'" said lead researcher Jennifer Lewis in a news release.
Perhaps the safest thing for everyone would be to give the man some poetry — it has a singular way of slipping through the backdoor of the psyche to anneal truth and open even the most fisted heart, "to awaken sleepers by other means than shock," as the poet Denise Levertov put it.
Word of the Day : bring to a desired consistency, texture or hardness by a process of gradually heating and cooling _________ The word anneal has appeared in one New York Times article in the past five years, on June 12, 2012, in "Toward a Greener Soda Can" by Matthew L. Wald: But recycling the cans turns out to be harder than it looks, because the basic soft drink or beer can is actually made of two kinds of aluminum.
The proboscis does not anneal properly post-eclosion and is non-functional.
DNA polymerase then adds DNA parts to gaps in the anneal components, and a Taq ligase can seal the final strands.
The ends are then removed by exonuclease to expose the repeats. Then the repeats anneal and the resulting molecule is repaired using polymerase and ligase.
The amplification reaction initiates when multiple primer hexamers anneal to the template. When DNA synthesis proceeds to the next starting site, the polymerase displaces the newly produced DNA strand and continues its strand elongation. The strand displacement generates newly synthesized single stranded DNA template for more primers to anneal. Further primer annealing and strand displacement on the newly synthesized template results in a hyper-branched DNA network.
Brynmorgen, 1992. pp 71-87 and a heat source. The heat source can be some kind of forge, a blowtorch, or anything hot enough to anneal the metal.
Applied over the interior of the glued & sewn seam, then anneal bonded with a hand held teflon heating iron produced a seam that was both securely sealed and much stronger.
Since driver and tester sequences are nearly identical, the excess of driver DNA fragments will anneal to homologous DNA fragments from the tester species. This blocks PCR amplification and there is no increase in homologous fragments. However, fragments that are different between the two species will not anneal to a complementary counterpart and will be amplified by PCR. As more cycles of RDA are performed, the pool of unique sequence fragment copies will grow faster than fragments found in both species.
This enables the construction of complementary overhangs that can anneal via complementary base pairing. There exist a variety of methods, e.g. Gibson assembly, CPEC, MODAL that make use of this concept to assemble DNA.
Nucleic acid strands are capable of re-annealling when "normal" conditions are restored, but if restoration occurs too quickly, the nucleic acid strands may re-anneal imperfectly resulting in the improper pairing of bases.
The third step occurs in the next cycle, when a single strand of the product of step II is used as a template to which fresh primers anneal leading to synthesis of more PD product.
Once melted, the glass would be blown into vessels or into cylinders which then were opened into sheets for window glass. The final stage is to anneal the finished glass to avoid damage from shrinkage stresses.
In molecular biology, hybridization (or hybridisation) is a phenomenon in which single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) molecules anneal to complementary DNA or RNA. Though a double-stranded DNA sequence is generally stable under physiological conditions, changing these conditions in the laboratory (generally by raising the surrounding temperature) will cause the molecules to separate into single strands. These strands are complementary to each other but may also be complementary to other sequences present in their surroundings. Lowering the surrounding temperature allows the single-stranded molecules to anneal or “hybridize” to each other.
Homologous recombination via the SDSA pathway occurs in cells that divide through mitosis and meiosis and results in non- crossover products. In this model, the invading 3' strand is extended along the recipient DNA duplex by a DNA polymerase, and is released as the Holliday junction between the donor and recipient DNA molecules slides in a process called branch migration. The newly synthesized 3' end of the invading strand is then able to anneal to the other 3' overhang in the damaged chromosome through complementary base pairing. After the strands anneal, a small flap of DNA can sometimes remain.
Amanda Havard was born in Shreveport, Louisiana to L.C. and Anneal Havard. She grew up in Dallas, TX and attended the Parish Episcopal School and the Hockaday School for girls.Amanda Havard website. Upon graduation, Havard attended Vanderbilt University in Nashville, TennesseeMediabistro's Pub App Expo Speakers, December 2011.
Polymerase chain reaction. There are three main steps involved in PCR. In the first step, the double stranded DNA strands are "melted" or denatured forming single stranded DNA. Next, primers, which have been designed to target a specific gene sequence on the DNA, anneal to the single stranded DNA.
328 In Smith's opinion, the life raft was a naval Carley float, which had come from Sydney. The wooden decking was manufactured and branded with the word "PATENT" while the metal framework was branded "LYSAGHT DUA-ANNEAL ZINC. MADE IN AUSTRALIA" inside.Cole, The Loss of HMAS Sydney II, vol.
Full annealing temperature ranges A full anneal typically results in the second most ductile state a metal can assume for metal alloy. Its purpose is to originate a uniform and stable microstructure that most closely resembles the metal's phase diagram equilibrium microstructure, thus letting the metal attain relatively low levels of hardness, yield strength and ultimate strength with high plasticity and toughness. To perform a full anneal on a steel for example, steel is heated to slightly above the austenitic temperature and held for sufficient time to allow the material to fully form austenite or austenite-cementite grain structure. The material is then allowed to cool very slowly so that the equilibrium microstructure is obtained.
After plating, an anti-oxidation or anti-tarnish chemical coating, such as phosphate or chromate, is applied, followed by rinsing with water and dried to prevent staining. Baking may be necessary to improve the hardness and adhesion of the plating, anneal any internal stresses, and expel trapped hydrogen that may make it brittle.
Next, the glass–cutter cut the cylinder, and the glass was flattened. It was necessary to gradually cool the glass, a process known as annealing, to prevent it from breaking. A lehr or annealing oven was used to anneal the product. A typical 20th-century lehr was a large conveyor inside a long oven.
The complex locks the RNAP clamp into a closed state to prevent the elongation complex (EC) from dissociating. The Spt5 NGN domain helps anneal the two strands of DNA upstream. The single KOW domain in bacteria and archaea anchors a ribosome to the RNAP. In bacteria, the homologous complex only contains NusG, a Spt5 homolog.
Germanium-doped core fibers can be radiation hard even at high concentrations of germanium. Such fibers reach saturation, anneal well at higher temperatures and are also responsive to photo-bleaching. In case of phosphorus-doped core fibers, attenuation increases linearly with increasing phosphorus content and these fibers do not reach saturation. Recovery is very difficult even at higher temperatures.
Instead, the SSA pathway only requires a single DNA duplex, and uses the repeat sequences as the identical sequences that homologous recombination needs for repair. The pathway is relatively simple in concept: after two strands of the same DNA duplex are cut back around the site of the double-strand break, the two resulting 3' overhangs then align and anneal to each other, restoring the DNA as a continuous duplex. As DNA around the double-strand break is cut back, the single-stranded 3' overhangs being produced are coated with the RPA protein, which prevents the 3' overhangs from sticking to themselves. A protein called Rad52 then binds each of the repeat sequences on either side of the break, and aligns them to enable the two complementary repeat sequences to anneal.
Both of these materials are hard and resist abrasion. Gas carburizing is normally carried out at a temperature within the range of 900 to 950 °C. In oxy-acetylene welding, a carburizing flame is one with little oxygen, which produces a sooty, lower-temperature flame. It is often used to anneal metal, making it more malleable and flexible during the welding process.
This allows for easier shaping of the metal. In order to keep this uniformity within the metal, it is cooled instantly. This prevents the molecules from moving around and causing tension in the structure of the metal. Unlike ferrous metals—which must be cooled slowly to anneal—copper can be cooled slowly in air or quickly by quenching in water.
The arrangements for lubrication include a pump which floods the dies, and in many cases also the bottom portions of the blocks run in lubricant. Often intermediate anneals are required to counter the effects of cold working, and to allow further drawing. A final anneal may also be used on the finished product to maximize ductility and electrical conductivity.Degarmo, p. 435.
Ligation-mediated PCR uses small DNA oligonucleotide 'linkers' (or adaptors) that are first ligated to fragments of the target DNA. PCR primers that anneal to the linker sequences are then used to amplify the target fragments. This method is deployed for DNA sequencing, genome walking, and DNA footprinting. A related technique is amplified fragment length polymorphism, which generates diagnostic fragments of a genome.
The manufacture of a mailcoat would have first required the production of a thin metal wire, via swaging or drawing. The wire was then tightly coiled around a circular ring approximately in diameter. The smith would then chisel any individual circuits off the rod, reheat it, and anneal it. Finally, the rings were joined together and closed using welding and riveting.
Upon annealing of pure diamond at ~700 °C, vacancies migrate and form divacancies, characterized by optical absorption and electron paramagnetic resonance. Similar to single interstitials, divacancies do not produce photoluminescence. Divacancies, in turn, anneal out at ~900 °C creating multivacancy chains detected by EPR and presumably hexavacancy rings. The latter should be invisible to most spectroscopies, and indeed, they have not been detected thus far.
One method often employed is to melt the reactants together and then later anneal the solidified melt. If volatile reactants are involved, the reactants are often put in an ampoule that is evacuated of the mixture By keeping the bottom of the ampoule in liquid nitrogen, and then sealed. The sealed ampoule is then put in an oven and given a certain heat treatment.
ACSR cable still depends on the tensile strength of the aluminium; it is only reinforced by the steel. Because of this, its continuous operating temperature is limited to , the temperature at which aluminium begins to anneal and soften over time. Cable which relies entirely on the steel for strength, and so can be used at temperatures up to , is called aluminium-conductor steel-supported (ACSS).
The 8 variable nucleotides anneal randomly to the single stranded genomic DNA molecule. After one extension, semi-amplicon, an amplicon containing the common nucleotide sequence on only the 5’ end, is made. This semi-amplicon is used as a template for another round of extension, which then results in a full-amplicon, an amplicon where the 3’ end is complementary to the sequence on the 5’ end.
This in vitro method is based on template switching to generate chimeric genes. This PCR based method begins with an initial denaturation of the template, followed by annealing of primers and a short extension time. All subsequent cycle generate annealing between the short fragments generated in previous cycles and different parts of the template. These short fragments and the templates anneal together based on sequence complementarity.
The same part often also forms the body of the contact itself, and is thus the current path. Abusing the switch mechanism to hold the contacts in a transition state, or severely overloading the switch, will heat and thus anneal the spring, reducing or eliminating the "snap action" of the switch, leading to slower transitions, more energy dissipated in the switch, and progressive failure.
The Gibson scarless assembly method allows the joining of multiple BioBricks simultaneously. This method requires the desired sequences to have an overlap of 20 to 150 bps. Because BioBricks do not have this overlap, this method requires PCR primers to create overhangs between adjacent BioBricks. T5 exonuclease attacks the 5' ends of sequences, creating single-stranded DNA in the ends of all sequences where the different components are designed to anneal.
The linker parts can be changed to change the sequence of assembly. # Finally, the parts with the attached linkers are assembled into a plasmid by incubating at 50 °C. The 21 bp overhangs of the P and S linkers anneal and the final construct can be transformed into bacteria cells for cloning. The single stranded nicks are repaired in vivo following transformation, producing a stable final construct cloned into plasmids.
Gibson assembly is a quick cloning method that uses three primary enzymes; 5' exonuclease, polymerase and ligase. The exonuclease digests the 5' end of DNA fragments leaving a 3' overhang. If there is significant homology (20-40 bp) on each end of the DNA insert, it can anneal with a complementary backbone. Afterwards the polymerase can fill in the gaps while ligase fuses the nicks at the end.
BDA achieve similar enrichment performance across anneal temperatures ranging from 56 °C to 64 °C. This temperature robustness facilitates multiplexed enrichment of many different variants across the genome, and furthermore enables the use of in- expensive and portable thermocycling instruments for rare DNA variant detection. BDA has been validated even on sample types including clinical cell-free DNA samples collected from the blood plasma of lung cancer patients.
Instead of cloning, adaptors containing the endonuclease sequence are ligated to the ends of fragmented genomic DNA or cDNA. The molecules are then self-circularized and digested with endonuclease, releasing the PET. Before sequencing, these PETs are ligated to adaptors to which PCR primers anneal for amplification. The advantage of cloning based construction of the library is that it maintains the fragments or cDNA intact for future use.
Options are currently being explored to overcome the limited coding capacity. The AAV ITRs of two genomes can anneal to form head-to-tail concatemers, almost doubling the capacity of the vector. Insertion of splice sites allows for the removal of the ITRs from the transcript. Because of AAV's specialized gene therapy advantages, researchers have created an altered version of AAV termed self-complementary adeno-associated virus (scAAV).
RuvA has a domain with acidic amino acid residues that interfere with the base pairs in the centre of the junction. This forces the base pairs apart so that they can re-anneal with base pairs on the homologous strands. In order for migration to occur, RuvA must be associated with RuvB and ATP. RuvB has the ability to hydrolyze ATP, driving the movement of the branch point.
Primer design aims to generate a balance between specificity and efficiency of amplification. Selecting a specific region of DNA for primer binding requires some additional considerations. Regions high in mononucleotide and dinucleotide repeats should be avoided, as loop formation can occur and contribute to mishybridization. Primers should not easily anneal with other primers in the mixture; this phenomenon can lead to the production of 'primer dimer' products contaminating the end solution.
After a short timestep it is degraded, the overlaps can anneal and be ligated. Cambridge University IGEM team made a video describing the process. Ligation independent cloning (LIC) is a new variant of the method for compiling several DNA pieces together and needing only exonuclease enzyme for the reaction. However, the method requires even number of DNA-pieces to be joined together and (usually PCR mediated) synthesis of suitable adapters.
A specific sequence of the cDNA is detected by 4 LAMP primers. Two of them are inner primers (FIP and BIP), which serve as base for the Bst enzyme copy the template into a new DNA. The outer primers(F3 and B3) anneal to the template strand and help the reaction to proceed. As in the case of RT-PCR, the RT-LAMP procedure starts by making DNA from the sample RNA.
Resistive heating can be used to efficiently anneal copper wire; the heating system employs a controlled electrical short circuit. It can be advantageous because it does not require a temperature-regulated furnace like other methods of annealing. The process consists of two conductive pulleys (step pulleys), which the wire passes across after it is drawn. The two pulleys have an electrical potential across them, which causes the wire to form a short circuit.
Annealing is the process of heating the iron-hydrogen alloy to a sufficiently high temperature to relieve local internal stresses. It does not create a general softening of the product but only locally relieves strains and stresses locked up within the material. Annealing goes through three phases: recovery, recrystallisation, and grain growth. The temperature required to anneal a particular iron hydride depends on the type of annealing to be achieved and the alloying constituents.
The two antibodies are then modified to have single stranded DNA connected to them that are complementary. When the two antibodies bind to a protein the complementary strands will anneal and produce a double stranded segment of DNA that can then be amplified using PCR. Each pair of antibodies designed for one protein is tagged with a different DNA sequence. The DNA amplified from PCR can then be sequenced, and the protein levels quantified.
Stretching or shrinking the flange requires a correct profile hammer and dolly. The hammer and dolly must match the desired flange shape at the point of contact through the flange, (known as ringing the dolly) with the hammer. A lot of shrinking or stretching work hardens the flange and can cause cracks and tears. While these can be welded, it is much better to anneal the metal before this happens to restore its workability.
TMEJ is intrinsically mutagenic, since polymerase theta uses homologous nucleotides from both break ends to initiate repair, which leads to loss of one set of these nucleotides in the DNA sequence. Therefore, TMEJ is a form of micro- homology mediated end joining (MMEJ). Moreover, when break ends are not stabilized properly, the break ends can detach after polymerization. When these polymerized ends anneal again, a templated insert arises between the deletion junctions.
It is sometimes used as a reducing agent for high-temperature soldering and brazing, to remove oxidation of the joint without the use of flux. It also finds application in microchip production, where a high-temperature anneal in forming gas assists in silicon- silicon dioxide interface passivation. Quite often forming gas is used in furnaces during annealing or sintering for the thermal treatment of metals, because it reduces oxides on the metal surface.
Fluorescent dyed probes replaced radio labeled probes due to the consideration of safety, stability, and ease of detection. Detecting a DNA sequence is similar to "looking for a needle in a haystack, with the needle being the DNA sequence of interest and the haystack being a set of chromosomes". The ability of the DNA helix to disassociate, re-anneal and the remarkable accuracy of base-pairing grants riboprobes the ability to locate its complementary DNA sequence on chromosomes.
Note, this is different than the yield strength anomaly, which is the yield strength below the peak, being rate dependent. The peak yield strength is also dependent on percent aluminum in the FeAl alloy. As the percent aluminum increases, the peak yield strength occurs at lower temperatures. The yield strength anomaly in FeAl alloys can be hidden if thermal vacancies are not minimized through a slow anneal at a relatively low temperature (~400 °C for ~5 days).
The paper is then placed into a plastic bag and filled with a solution full of the DNA fragments, called the probe, found in the desired sample of DNA. The probes anneal to the complementary DNA of the bands already found on the nitrocellulose sample. Afterwards, probes are washed off and the only ones present are the ones that have annealed to complementary DNA on the paper. Next the paper is stuck onto an x ray film.
In discussing the impact Herbert's poem has on his views, he said "what I see Herbert saying in that poem is that we take our passions, and sometimes our faults and our brokenness and our stains, and we let God anneal his story. So there's some point in which we become a window of grace".Duke Divinity School, Malcolm Guite: Church with poetry enshrined at the heart, Faith & Leadership (20 July 2009). Retrieved 18 July 2015.
Site directed mutagenesis is a valuable technique that allows for the replacement of a single base in an oligonucleotide or gene. The basics of this technique involve the preparation of a primer that will be a complementary strand to a wild type bacterial plasmid. This primer will have a base pair mismatch at the site where the replacement is desired. The primer must also be long enough such that the primer will anneal to the wild type plasmid.
230 to 250 °C for zircon, and c. 300 °C for titanite. Because heating of a sample above the annealing temperature causes the fission damage to heal or anneal, the technique is useful for dating the most recent cooling event in the history of the sample. This resetting of the clock can be used to investigate the thermal history of basin sediments, kilometer-scale exhumation caused by tectonism and erosion, low temperature metamorphic events, and geothermal vein formation.
This method relies on PCR to differentially amplify non-homologous DNA regions between digested fragments of two nearly identical DNA species, that are called 'driver' and 'tester' DNA. Typically, tester DNA contains a sequence of interest that is non-homologous to driver DNA. When the two species are mixed, the driver sequence is added in excess to tester. During PCR, double stranded fragments first denature at ~95°C and then re-anneal when subjected to the annealing temperature.
The neck of the case is placed in a propane torch flame and heated it until the crayon mark changes color, indicating the correct temperature. Once the correct temperature is reached the case is completely quenched in water to stop the annealing process at the desired hardness. Failing to keep the base of the case cool can anneal the case near the head, where it must remain hard to function properly.Gun Tests article on case annealing.
YAG or fiber laser markers that anneal the titanium surface are the low cost solution while the femtosecond laser is on the high end of the cost scale. Surface roughness of laser roughened surfaces is best measured using a three-dimensional scanning laser microscope or a non-contact profilometer. XPS and SEM analysis of alloyed titanium, like grade 5, will show the segregation of the aluminum and vanadium. Oftentimes, the laser roughening is done in ambient conditions with or without argon shielding gas.
Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) combined with single-base extension after PCR allows cffDNA detection with single base specificity and single DNA molecule sensitivity. DNA is amplified by PCR. Then, linear amplification with base extension reaction (with a third primer) is designed to anneal to the region upstream from the mutation site. One or two bases are added to the extension primer to produce two extension products from wild-type DNA and mutant DNA.
Both were installed in 1953 by United and had a combined annual capacity of 120,000 tons. The cold anneal and pickle line were installed in 1975 by Production Machinery. The line consisted of an entry end washing section to remove rolling oils, an open air annealing furnace (where the strip was heated above ), and three acid pickling tanks followed by rinsing and drying units. Paper was interleaved between the coil wraps at the exit take up reel to avoid surface abrasion.
The most common vacuum-based process is to co-evaporate or co-sputter copper, gallium, and indium onto a substrate at room temperature, then anneal the resulting film with a selenide vapor. An alternative process is to co-evaporate copper, gallium, indium and selenium onto a heated substrate. A non-vacuum-based alternative process deposits nanoparticles of the precursor materials on the substrate and then sinters them in situ. Electroplating is another low cost alternative to apply the CIGS layer.
Figure 4: Methylation-specific PCR is a sensitive method to discriminately amplify and detect a methylated region of interest using methylated-specific primers on bisulfite-converted genomic DNA. Such primers will anneal only to sequences that are methylated, and thus containing 5-methylcytosines that are resistant to conversion by bisulfite. In alternative fashion, unmethylated-specific primers can be used. This alternative method of methylation analysis also uses bisulfite-treated DNA but avoids the need to sequence the area of interest.
To better study the fission tracks created, the natural damage tracks are further enlarged by chemical etching so they can be viewed under ordinary optical microscopes. The age of the mineral is then determined by first knowing the spontaneous rate of fission decay, and then measuring the number of tracks accumulated over the mineral's lifetime as well as estimating the amount of Uranium still present. At higher temperatures, fission tracks are known to anneal. Therefore, exact dating of samples is very hard.
With time, these Arp1 filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments. As for conventional actin, Arp1 can bind and hydrolyze ATP, and Arp1 assembly is accompanied by nucleotide hydrolysis. It has been reported that Arp1 interacts with other dynactin components including DCTN1/p150Glued,DCTN4/p62 and Actr10/Arp11. Arp1 has been shown as the domain for dynactin binding to membrane vesicles (such as Golgi or late endosome) through its association with β-spectrin.
A microsatellite null allele is an allele at a microsatellite locus that does not amplify to detectable levels in a polymerase chain reaction test. Microsatellite regions are usually characterized by short, repeated sequences of nucleotides. Primers that are specific to a particular locus are used in PCR amplification to bind to these nucleotide sequence repeats and are used as genetic markers. The primers anneal to either end of the locus and are derived from source organisms in a genomic library.
The stages of the firing can be varied but typically start to climb at quite a rapid rate until the heat places the glass in an "orange state" i.e., flexible. At that point, gravity will allow the glass to slump into the mold and the temperature is held at a constant for a period that is known as the "soak". Following this stage, the kiln is allowed to cool slowly so that the slumped glass can anneal and be removed from the kiln.
The primer is allowed to anneal to the RNA and reverse transcriptase is used to synthesize cDNA from the RNA until it reaches the 5' end of the RNA. By denaturing the hybrid and using the extended primer cDNA as a marker on an electrophoretic gel, it is possible to determine the transcriptional start site. It is usually done so by comparing its location on the gel with the DNA sequence (e.g. Sanger sequencing), preferably by using the same primer on the DNA template strand.
Polymer-backed solar cells are of interest for seamlessly integrated power production schemes that involve placing photovoltaics on everyday surfaces. A third method for crystallizing amorphous silicon is the use of thermal plasma jet. This strategy is an attempt to alleviate some of the problems associated with laser processing – namely the small region of crystallization and the high cost of the process on a production scale. The plasma torch is a simple piece of equipment that is used to thermally anneal the amorphous silicon.
RNaseH enzymes are the primary proteins responsible for the dissolution of R-loops, acting to degrade the RNA moiety in order to allow the two complementary DNA strands to anneal. Research over the past decade has identified more than 50 proteins that appear to influence R-loop accumulation, and while many of them are believed to contribute by sequestering or processing newly transcribed RNA to prevent re-annealing to the template, mechanisms of R-loop interaction for many of these proteins remain to be determined.
Generation of junctional diversity starts as the proteins, recombination activating gene-1 and -2 (RAG1 and RAG2), along with DNA repair proteins, such as Artemis, are responsible for single-stranded cleavage of the hairpin loops and addition of a series of palindromic, 'P' nucleotides. Subsequent to this, the enzyme, terminal deoxynucleotidyl transferase (TdT), adds further random 'N' nucleotides. The newly synthesised strands anneal to one another, but mismatches are common. Exonucleases remove these unpaired nucleotides and the gaps are filled by DNA synthesis and repair machinery.
This produces two single-stranded (ss) DNA tails and one ss loop. The loop and tails enlarge as RecBCD moves along the DNA. Step 3: The two tails anneal to produce a second ss DNA loop, and both loops move and grow. Step 4: Upon reaching the Chi hotspot sequence (5' GCTGGTGG 3'; red dot) RecBCD nicks the 3’-ended strand. Further unwinding produces a long 3'-ended ss tail with Chi near its end. Step 5: RecBCD loads RecA protein onto the Chi tail.
Due to the fact that PNA backbones contain no charged phosphate groups, binding between PNA and DNA is stronger than that of DNA/DNA or DNA/RNA duplexes. Q-FISH utilizes this unique characteristic of PNAs where at low ionic strengths, PNAs can anneal to complementary single-stranded DNA sequences while single-stranded DNA cannot. By using conditions that only allow labeled (CCCTAA)3 PNA to hybridize to (TTAGGG)n target sequences, Q-FISH is able to quantify the hybridization of PNAs to telomeric sequences.
These features make AAV a very attractive candidate for creating viral vectors for gene therapy. However, AAV can only bring up to 5kb which is considerably small compared to AAV's original capacity. Furthermore, because of its potential use as a gene therapy vector, researchers have created an altered AAV called self- complementary adeno-associated virus (scAAV). Whereas AAV packages a single strand of DNA and requires the process of second-strand synthesis, scAAV packages both strands which anneal together to form double stranded DNA.
Reduction of a typical disulfide bond by DTT via two sequential thiol-disulfide exchange reactions. The sample to analyze is optionally mixed with a chemical denaturant if so desired, usually SDS for proteins or urea for nucleic acids. SDS is an anionic detergent that denatures secondary and non–disulfide–linked tertiary structures, and additionally applies a negative charge to each protein in proportion to its mass. Urea breaks the hydrogen bonds between the base pairs of the nucleic acid, causing the constituent strands to anneal.
This section refers to preparation of standard cytogenetic preparations The slide is aged using a salt solution usually consisting of 2X SSC (salt, sodium citrate). The slides are then dehydrated in ethanol, and the probe mixture is added. The sample DNA and the probe DNA are then co-denatured using a heated plate and allowed to re-anneal for at least 4 hours. The slides are then washed to remove excess unbound probe, and counterstained with 4',6-Diamidino-2-phenylindole (DAPI) or propidium iodide.
Outside of the prefix and suffix regions, the DNA part must not contain these restriction sites. To join two BioBrick parts together, one of the plasmids is digested with EcoRI and SpeI while the second plasmid is digested with EcoRI and XbaI. The two EcoRI overhangs are complementary and will thus anneal together, while SpeI and XbaI also produce complementary overhangs which can also be ligated together. As the resulting plasmid contains the original prefix and suffix sequences, it can be used to join with more BioBricks parts.
ICP8, the herpes simplex virus type-1 single-strand DNA-binding protein, is one of seven proteins encoded in the viral genome of HSV-1 that is required for HSV-1 DNA replication. It is able to anneal to single-stranded DNA (ssDNA) as well as melt small fragments of double-stranded DNA (dsDNA); its role is to destabilize duplex DNA during initiation of replication. It differs from helicases because it is ATP- and Mg2+-independent. In cells infected with HSV-1, the DNA in those cells become colocalized with ICP8.
Furnaces are capable of processing many wafers at a time but each process can last between several hours and a day. Increasingly, furnace anneals are being supplanted by Rapid Thermal Anneal (RTA) or Rapid Thermal Processing (RTP). This is due to the relatively long thermal cycles of furnaces that causes the dopants that are being activated, especially boron, to diffuse farther than is intended. RTP or RTA fixes this by having thermal cycles for each wafer that is of the order of minutes rather than hours for furnace anneals.
As long as the fluorophore and the quencher are in proximity, quenching inhibits any fluorescence signals. TaqMan probes are designed such that they anneal within a DNA region amplified by a specific set of primers. (Unlike the diagram, the probe binds to single stranded DNA.) TaqMan probes can be conjugated to a minor groove binder (MGB) moiety, dihydrocyclopyrroloindole tripeptide (DPI3), in order to increase its binding affinity to the target sequence; MGB-conjugated probes have a higher melting temperature (Tm) due to increased stabilisation of van der Waals forces.
The second stage- the anneal soak at is meant to equalize the temperature at the core and the surface of the glass at relieving the stress between those areas. The last stage, once all areas have had time to reach a consistent temperature, is the final journey to room temperature. The kiln is slowly brought down over the course of 2 hours to , soaked for 2 hours at , down again to which ends the firing schedule. The glass will remain in the closed kiln until the pyrometer reads room temperature.
First the CORE cassette is amplified by PCR with primers containing regions of homology to the chromosomal site where it will be inserted. The CORE cassette is integrated via homologous recombination. Cells containing the CORE cassette can be selected for using the reporter gene and can be further confirmed using the counterselectable marker. Integration of the CORE cassette in the correct chromosomal location can be verified via PCR using primers that anneal upstream of the integration site, within the CORE and downstream of the integration size, which are designed to generate 500–1500 bp fragments.
The details of the process depend on the type of metal and the precise alloy involved. In any case the result is a more ductile material but a lower yield strength and a lower tensile strength. This process is also called LP annealing for lamellar pearlite in the steel industry as opposed to a process anneal, which does not specify a microstructure and only has the goal of softening the material. Often the material to be machined is annealed, and then subject to further heat treatment to achieve the final desired properties.
Rapid thermal anneal (RTA) is a subset of Rapid Thermal Processing. It is a process used in semiconductor device fabrication which consists of heating a single wafer at a time in order to affect its electrical properties. Unique heat treatments are designed for different effects. Wafers can be heated in order to activate dopants, change film-to-film or film-to-wafer substrate interfaces, densify deposited films, change states of grown films, repair damage from ion implantation, move dopants or drive dopants from one film into another or from a film into the wafer substrate.
He completed his research in 1826, and won an award ("Premium No. 4") from the Franklin Institute in Philadelphia two years later, who noted that Boyden's annealed cast iron specimen No. 363, containing an assortment of buckles, bits, and other castings, were "remarkable for their smoothness and malleability" and "the first attempt in this country to anneal cast iron for general purposes." This invention, now called blackheart iron, is one of the most important contributions to metallurgy by an American. Several sources state that Boyden "made the first American daguerreotype""Boyden, Seth." Student's Encyclopædia. 2009.
During the polymerase cycles, the oligonucleotides anneal to complementary fragments and then are filled in by polymerase. Each cycle thus increases the length of various fragments randomly depending on which oligonucleotides find each other. It is critical that there is complementarity between all the fragments in some way or a final complete sequence will not be produced as polymerase requires a template to follow. After this initial construction phase, additional primers encompassing both ends are added to perform a regular PCR reaction, amplifying the target sequence away from all the shorter incomplete fragments.
His larger sculptures are taken from source material that can weigh over 4,000 pounds, and the process of reducing and polishing can take as much as a year. Ries's Opus was at the time of its creation the world's largest monolithic glass sculpture. It weighs nearly 1,500 pounds (680 kilograms) and was sculpted from a 3,000 pound (1361 kilogram) block of glass. One of Ries's most famous works, the 1,100 pound (499 kilogram) Sunflower IV, took four months to anneal and required a further 1,800 estimated hours to carve.
MutL also has weak ATPase activity (it uses ATP for purposes of movement). It forms a complex with MutS and MutH, increasing the MutS footprint on the DNA. However, the processivity (the distance the enzyme can move along the DNA before dissociating) of UvrD is only ~40–50 bp. Because the distance between the nick created by MutH and the mismatch can average ~600 bp, if there is not another UvrD loaded the unwound section is then free to re-anneal to its complementary strand, forcing the process to start over.
The hot inner disk is likely the source of accreted material. The temperature of the inner disk is comparable to temperatures where amorphous silicates anneal into crystalline form. The inner disk also lies near the Roche limit of the red dwarf and therefore the inner disk could be the result of disrupted planetesimals. The warm outer disk could be similar to dust belts seen around B- to K-type stars, which have temperatures around 190 K and which likely represent small dust grains of sublimating ice from icy planetesimals.
Primer dimer is formed and amplified in a three- step process A primer dimer is formed and amplified in three steps. In the first step, two primers anneal at their respective 3' ends (step I in the figure). If this construct is stable enough, the DNA polymerase will bind and extend the primers according to the complementary sequence (step II in the figure). An important factor contributing to the stability of the construct in step I is a high GC-content at the 3' ends and length of the overlap.
Chimeric primers: some DNA bases in the primer are replaced with RNA bases, creating a chimeric sequence. The melting temperature of a chimeric sequence with another chimeric sequence is lower than that of chimeric sequence with DNA. This difference enables setting the annealing temperature such that the primer will anneal to its target sequence, but not to other chimeric primers. Blocked-cleavable primers: a method known as RNase H-dependent PCR (rhPCR), utilizes a thermostable RNase HII to remove a blocking group from the PCR primers at high temperature.
The staggered extension process (also referred to as StEP) is a common technique used in biotechnology and molecular biology to create new, mutated genes with qualities of one or more initial genes. The technique itself is a modified polymerase chain reaction with very short (approximately 10 seconds) cycles. In these cycles the elongation of DNA is very quick (only a few hundred base pairs) and synthesized fragments anneal with complementary fragments of other strands. In this way, mutations of the initial genes are shuffled and in the end genes with new combinations of mutations are amplified.
Slower heating will anneal the material, causing loss of its pyrotechnic properties. For electrical initiation, a momentary contact at 10A/5V is sufficient; for ohmic contact, 120-150 amperes is needed for a 15 micrometer diameter contact, and 250-300 A for a 300 micrometer contact. It can be also ignited by a heat paper. When the flame front reaches the edge of the material, particles of molten metal can be ejected, causing voids in the bond; this can be prevented by simultaneous ignition from more sides, so the flame fronts meet in the middle, confined by the substrates.
To increase yield and achieve exponential amplification as PCR does, several approaches have been investigated. One of them is the hyperbranched rolling circle amplification or HRCA, where primers that anneal to the original RCA products are added, and also extended. In this way the original RCA creates more template that can be amplified. Another is circle to circle amplification or C2CA, where the RCA products are digested with a restriction enzyme and ligated into new circular templates using a restriction oligo, followed by a new round of RCA with a larger amount of circular templates for amplification.
An example of annealing is described in a 2005 paper by Petta, et al., where a Bell pair of electrons is prepared in quantum dots. This procedure relies on T1 to anneal the system, and the paper focuses on measuring the T2 relaxation time of the quantum-dot system and gives an idea of the timescales involved (milliseconds), which would be a fundamental roadblock, given that then the decoherence time is shorter than the initialisation time. Alternate approaches (usually involving optical pumping) have been developed to reduce the initialisation time and improve the fidelity of the procedure.
Because of the stem-loop structure of the probe, the fluorophore is in close proximity to the quencher, thus preventing the molecule from emitting any fluorescence. The molecule is also engineered such that only the probe sequence is complementary to the genomic DNA that will be used in the assay (Abravaya et al. 2003). If the probe sequence of the molecular beacon encounters its target genomic DNA during the assay, it will anneal and hybridize. Because of the length of the probe sequence, the hairpin segment of the probe will be denatured in favour of forming a longer, more stable probe-target hybrid.
First, DNase is used to fragment a set of parent genes into pieces of 50-100 bp in length. This is then followed by a polymerase chain reaction (PCR) without primers- DNA fragments with sufficient overlapping homologous sequence will anneal to each other and are then extended by DNA polymerase. Several rounds of this PCR extension are allowed to occur, after some of the DNA molecules reach the size of the parental genes. These genes can then be amplified with another PCR, this time with the addition of primers that are designed to complement the ends of the strands.
Diagrammatic representation of the forward and reverse primers for a standard PCR Synthetic primers are chemically synthesized oligonucleotides, usually of DNA, which can be customized to anneal to a specific site on the template DNA. In solution, the primer spontaneously hybridizes with the template through Watson-Crick base pairing before being extended by DNA polymerase. The ability to create and customize synthetic primers has proven an invaluable tool necessary to a variety of molecular biological approaches involving the analysis of DNA. Both the Sanger chain termination method and the “Next-Gen” method of DNA sequencing require primers to initiate the reaction.
In the laboratory it is a common precipitant and cryoprotectant in protein crystallography.Crystallization Techniques: Additives, Enrico Stura, University of Glasgow Since hexylene glycol is compatible with polar and nonpolar molecules, it competes with the solvent in a crystallography experiment causing the protein to precipitate. Hexylene glycol is so effective in protein crystallography because its amphiphilic nature and small, flexible structure allows it to bind to many different locations on a protein secondary structure including alpha helices and beta sheets. When hexylene glycol binds to these different locations, water is removed and the protein crystals anneal, which prevents ice formation during cryocrystallography techniques.
However, when assisted by MutL, the rate of UvrD loading is greatly increased. While the processivity (and ATP utilisation) of the individual UvrD molecules remains the same, the total effect on the DNA is boosted considerably; the DNA has no chance to re-anneal, as each UvrD unwinds 40-50 bp of DNA, dissociates, and then is immediately replaced by another UvrD, repeating the process. This exposes large sections of DNA to exonuclease digestion, allowing for quick excision (and later replacement) of the incorrect DNA. Eukaryotes have five _M_ ut _L_ _h_ omologs designated as MLH1, MLH2, MLH3, PMS1, and PMS2.
This image shows how OE-PCR might be utilized to delete a sequence from a DNA strand To insert a mutation into a DNA sequence, a specific primer is designed. The primer may contain a single substitution or contain a new sequence at its 5' end. If a deletion is required, a sequence that is 5' of the deletion is added, because the 3' end of the primer must have complementarity to the template strand so that the primer can sufficiently anneal to the template DNA. Following annealing of the primer to the template, DNA replication proceeds to the end of the template.
After further PCR cycles, to amplify the DNA, the sample can be separated by agarose gel electrophoresis, followed by electroelution for collection. Efficiently generating oligonucleotides beyond ~110 nucleotides in length is very difficult, so to insert a mutation further into a sequence than a 110 nt primer will allow, it is necessary to employ overlap extension PCR. In OE-PCR the sequence being modified is used to make two modified strands with the mutation at opposite ends, using the technique described above. After mixing and denaturation, the strands are allowed to anneal to produce three different combinations as detailed in the diagram.
The Gibson assembly method is a relatively straightforward DNA assembly method, requiring only a few additional reagents: the 5' T5 exonuclease, Phusion DNA polymerase, and Taq DNA ligase. The DNA fragments to be assembled are synthesised to have overlapping 5' and 3' ends in the order that they are to be assembled in. These reagents are mixed together with the DNA fragments to be assembled at 50 °C and the following reactions occur: # The T5 exonuclease chews back DNA from the 5' end of each fragment, exposing 3' overhangs on each DNA fragment. # The complementary overhangs on adjacent DNA fragments anneal via complementary base pairing.
The sample is then simultaneously heated and the pressure is reduced enough to force the ice crystals to sublimate and the YSZ pockets begin to anneal together to form macroscopically aligned ceramic microstructures. The sample is then further sintered to complete the evaporation of the residual water and the final consolidation of the ceramic microstructure. During ice-templating a few variables can be controlled to influence the pore size and morphology of the microstructure. These important variables are the initial solids loading of the colloid, the cooling rate, the sintering temperature and duration, and the use of certain additives which can influence the micro-structural morphology during the process.
Note however that NdeI generates only a two-base overhang and therefore has a lower melting temperature than other restriction enzymes that generate a four- base overhang. It has a lower ligation efficiency, (Note that this paper has an error describing NdeI as a four-base cutter.) since ligation is affected by the ability of the ends to anneal and a two-base overhang has a significantly lower melting temperature compared to a 4-base overhang. Ligation of NdeI- generated ends is therefore best performed with higher ligase concentration with a longer ligation time, whether at room temperature, 14-16°C, or at 4°C.
MMEJ is completely independent from classical NHEJ and does not rely on NHEJ core factors such as Ku protein, DNA-PK, or Ligase IV. In MMEJ, repair of the DSB is initiated by end resection by the MRE nuclease, leaving single stranded overhangs. These single stranded overhangs anneal at microhomologies, which are short regions of complementarity, often 5–25 base pairs, between the two strands. A specialized form of MMEJ, called polymerase theta-mediated end-joining (TMEJ), is able to repair breaks using ≥1 bp of homology. The helicase domain of DNA polymerase theta possesses ATP-dependent single-strand annealing activity and may promote annealing of microhomologies.
Procedure of traditional polymerase chain reaction (PCR) Polymerase chain reaction (PCR) is a molecular biology technique used to amplify specific DNA segments by several orders of magnitude. The specific segments of DNA is amplified over three processes, denaturation, annealing and extension – where the DNA strands are separated by raising the temperature to the optimal from room temperature before primers bind and polymerase aligns nucleotides to the template strand. It uses DNA polymerase, which is slightly active at low temperatures. In conventional PCR, the reaction mix is completed at room temperature, and due to DNA polymerase activity, primers may form primer dimers or anneal to DNA non-specifically.
Pairs of primers should have similar melting temperatures since annealing during PCR occurs for both strands simultaneously, and this shared melting temperature must not be either too much higher or lower than the reaction's annealing temperature. A primer with a Tm (melting temperature) too much higher than the reaction's annealing temperature may mishybridize and extend at an incorrect location along the DNA sequence. A Tm significantly lower than the annealing temperature may fail to anneal and extend at all. Additionally, primer sequences need to be chosen to uniquely select for a region of DNA, avoiding the possibility of hybridization to a similar sequence nearby.
Because primers are designed to have low complementarity to each other, they may anneal (step I in the figure) only at low temperature, e.g. room temperature, such as during the preparation of the reaction mixture. Although DNA polymerases used in PCR are most active around 70 °C, they have some polymerizing activity also at lower temperatures, which can cause DNA synthesis from primers after annealing to each other. Several methods have been developed to prevent PDs formation until the reaction reaches working temperature (60-70 °C), and these include initial inhibition of the DNA polymerase, or physical separation of reaction components reaction until the reaction mixture reaches the higher temperatures.
Tetramer subunits associate side-to-side to form unit-length filaments, which then anneal end-to-end to form the mature neurofilament polymer, but the precise organization of these subunits within the polymer is not known, largely because of the heterogeneous protein composition and the inability to crystallize neurofilaments or neurofilament proteins. Structural models generally assume eight tetramers (32 neurofilament polypeptides) in a filament cross-section, but measurements of linear mass density suggest that this can vary. The amino terminal domains of the neurofilament proteins contain numerous phosphorylation sites and appear to be important for subunit interactions during filament assembly. The carboxy terminal domains appear to be intrinsically disordered domains that lack alpha helix or beta sheet.
Several techniques exist to produce pre-alloyed powder, such as Grade 5. In the hydride-dehydride process feedstock such as solid scrap, billet or machined turnings are processed to remove contaminants, hydrogenated to produce brittle material then ground under argon in a vibratory ball mill, typically at 400 °C for 4 hours at a pressure of 1 psi for Ti Grade 5. The resulting particles are angular and measure between 50 and 300 μm. Cold compaction after dehydrogenation of the powder, followed by either vacuum hot pressing (in this case the dehydrogenation process can be bypassed as hydrogen is removed under vacuum) or HIP and a final vacuum anneal, produces powders with hydrogen below 125 ppm.
The close proximity of the reporter to the quencher prevents detection of its fluorescence; breakdown of the probe by the 5' to 3' exonuclease activity of the Taq polymerase breaks the reporter-quencher proximity and thus allows unquenched emission of fluorescence, which can be detected after excitation with a laser. An increase in the product targeted by the reporter probe at each PCR cycle therefore causes a proportional increase in fluorescence due to the breakdown of the probe and release of the reporter. #The PCR is prepared as usual (see PCR), and the reporter probe is added. #As the reaction commences, during the annealing stage of the PCR both probe and primers anneal to the DNA target.
All models of quantum and classical computation are based on performing operations on states maintained by qubits or bits and measuring and reporting a result, a procedure that is dependent on the initial state of the system. In particular, the unitarity nature of quantum mechanics makes initialisation of the qubits extremely important. In many cases, initialisation is accomplished by letting the system anneal to the ground state. This is of particular importance when you consider quantum error correction, a procedure to perform quantum processes that are robust against certain types of noise and that require a large supply of freshly initialised qubits, which places restrictions on how fast the initialisation can be.
To anneal glass, it is necessary to heat it to its annealing temperature, at which its viscosity, η, drops to 1013 Poise ("Poise" viscosity; 1 poise = 1 dyne-second/cm²). For most kinds of glass, this annealing temperature is in the range of 454–482 °C (850–900 °F), and is the so-called stress-relief point or annealing point of the glass. At such a viscosity, the glass is still too hard for significant external deformation without breaking, but it is soft enough to relax internal strains by microscopic flow in response to the intense stresses they introduce internally. The piece then heat-soaks until its temperature is even throughout and the stress relaxation is adequate.
In addition to the components necessary for standard a PCR reaction (i.e. template DNA, carefully designed forward and reverse primers, DNA polymerase [usually Taq], dNTPs, and a buffer solution containing Mg2+), qPCR reactions involve fluorescent dye-labelled probes that complement and anneal to the DNA sequence of interest that lies between the two primers. A “reporter” (R) dye is attached at the 5’ end of the fluorescent probe while a “quencher” (Q) dye is attached at the 3’ end. Before the DNA strands are extended by the polymerase, the reporter and quencher are close enough in space that no fluorescence is detected by the instrument (the quencher completely absorbs/masks the fluorescence of the reporter).
The biochemistry of Polony sequencing mainly relies on the discriminatory capacities of ligases and polymerases. First, a series of anchor primers are flowed through the cells and hybridize to the synthetic oligonucleotide sequences at the immediate 3’ or 5’ end of the 17-18 bp proximal or distal genomic DNA tags. Next, an enzymatic ligation reaction of the anchor primer to a population of degenenerate nonamers that are labeled with fluorescent dyes is performed. Differentially labeled nonamers: 5' Cy5‐NNNNNNNNT 5' Cy3‐NNNNNNNNA 5' TexasRed‐NNNNNNNNC 5' 6FAM‐NNNNNNNNG The fluorophore-tagged nonamers anneal with differential success to the tag sequences according to a strategy similar to that of degenerate primers, but instead of submission to polymerases, nonamers are selectively ligated onto adjoining DNA- the anchor primer.
In this regard, using trioctylphosphine oxide (TOP) as the phosphorus precursor with an approximately six-fold larger molecular footprint than DPP, the dopant dose can be modulated in the reduction of six times accordingly. Moreover, the doping profiles can be readily tuned through optimization of the annealing conditions. In this case, the high surface doping density with sharp spatial decay can be obtained by using this MLD method with low anneal temperatures and short times for the formation of USJs. The ability to controllably tune the dopant dose through the structural design of the precursor and to control the dopant profile by the annealing conditions present a unique aspect of the MLD process for attaining the desired dopant dose and profile.
This displaced strand pops up to form a 3' overhang in the original double-stranded break duplex, which can then anneal to the opposite end of the original break through complementary base pairing. Thus DNA synthesis fills in gaps left over from annealing, and extends both ends of the still present single stranded DNA break, ligating all remaining gaps to produce recombinant non-crossover DNA. SDSA is unique in that D-loop translocation results in conservative rather than semiconservative replication, as the first extended strand is displaced from its template strand, leaving the homologous duplex intact. Therefore, although SDSA produces non-crossover products because flanking markers of heteroduplex DNA are not exchanged, gene conversion does occur, wherein nonreciprocal genetic transfer takes place between two homologous sequences.
However, for optimal ligation efficiency with cohesive-ended fragments ("sticky ends"), the optimal enzyme temperature needs to be balanced with the melting temperature Tm of the sticky ends being ligated, the homologous pairing of the sticky ends will not be stable because the high temperature disrupts hydrogen bonding. A ligation reaction is most efficient when the sticky ends are already stably annealed, and disruption of the annealing ends would therefore result in low ligation efficiency. The shorter the overhang, the lower the Tm. Since blunt-ended DNA fragments have no cohesive ends to anneal, the melting temperature is not a factor to consider within the normal temperature range of the ligation reaction. The limiting factor in blunt end ligation is not the activity of the ligase but rather the number of alignments between DNA fragment ends that occur.
Sequencing of the 200,000-bp flamenco locus was difficult, as it turned out to be packed with transposable element fragments (104 insertions of 42 different transposons, including multiple Gypsies), all facing the same direction. Indeed, piRNAs are all found in clusters throughout animal genomes; these clusters may contain as few as ten or many thousands of piRNAs matching different, phased transposon fragments. This led to the idea in 2007 that in germlines a pool of primary piRNAs is processed from long single-stranded transcripts encoded by piRNA clusters in the opposite orientation of the transposons, so that the piRNAs can anneal to and complement the transposon-encoded transcripts, thereby triggering their degradation. Any transposon landing in the correct orientation in such a cluster will make the individual more or less immune to that transposon, and such an advantageous mutation will spread quickly through the population.
Those few windows which were produced between 1500 and 1800 were generally of painted glass in which process the colours were applied by brush to the surface of the glass and fired to anneal them, rather than the artist working with numerous sections of coloured glass and piecing them together. It has been claimed of Willement that through his observations of old windows, he reinvented the ancient method of leading coloured pieces and integrating the visually black lines created between the colours by the lead cames into the design of the window. From observing 14th century windows such as the West window of York Minster, Willement developed the artistic method of arranging figures one to each single light, surmounted by a decorative canopy. He was further encouraged after 1839 in the archaeological direction that his work took by the Cambridge Camden Society who promoted all things Medievalising in the structure of new churches and the restoration of old ones.
Ribbed zinc anneal roof sheeting and wall cladding was used. The timber-framed building had brick ends that were designed to match the existing school buildings. Western verandahs were used at both levels and awning windows on all elevations.DPW, Plan A.87/195/2, Block F, foundation plan, 1960A.87.195/3, Block F, 1960A.87.195/4, Block F elevation, 1960A.87.195/6 Block F details, 1960A.87.195/9 Block F section, 1960 Block F was completed by May 1961. It was aligned roughly north-south and linked to the eastern end of Block E by an elevated covered way with open-web steel trusses, similar in design to a link that was also constructed between the first floor verandahs of Blocks B and E.Aerial 6 June 1964, DNRM, QAP1585-2197 With the addition of Block F, a parade ground was formed to the southeast of Block E, providing a formal assembly space for the growing school.
This limitation is meaningless for 'read-only' applications such as thin clients and routers, which are programmed only once or at most a few times during their lifetimes. In December 2012, Taiwanese engineers from Macronix revealed their intention to announce at the 2012 IEEE International Electron Devices Meeting that they had figured out how to improve NAND flash storage read/write cycles from 10,000 to 100 million cycles using a "self-healing" process that used a flash chip with "onboard heaters that could anneal small groups of memory cells." The built-in thermal annealing was to replace the usual erase cycle with a local high temperature process that not only erased the stored charge, but also repaired the electron-induced stress in the chip, giving write cycles of at least 100 million. The result was to be a chip that could be erased and rewritten over and over, even when it should theoretically break down.
MiRNA processing The most basic mechanistic flow for RNA Silencing is as follows: (For a more detailed explanation of the mechanism, refer to the RNAi:Cellular mechanism article.) 1: RNA with inverted repeats hairpin/panhandle constructs --> 2: dsRNA --> 3: miRNAs/siRNAs --> 4: RISC --> 5: Destruction of target mRNA # It has been discovered that the best precursor to good RNA silencing is to have single stranded antisense RNA with inverted repeats which, in turn, build small hairpin RNA and panhandle constructs. The hairpin or panhandle constructs exist so that the RNA can remain independent and not anneal with other RNA strands. # These small hairpin RNAs and/or panhandles then get transported from the nucleus to the cytosol through the nuclear export receptor called exportin-5, and then get transformed into a dsRNA, a double stranded RNA, which, like DNA, is a double stranded series of nucleotides. If the mechanism didn't use dsRNAs, but only single strands, there would be a higher chance for it to hybridize to other "good" mRNAs.
The sphere of woman embraces not only the beautiful and the useful, but the true". Foote's paper was published later the same year under her name in the American Journal of Science and Arts. However, this paper was not included in Proceedings from 1856, which was the published work from the AAAS meetings of the year. A summary of Eunice Foote's work was published in The 1857 Anneal of Scientific Discovery, a book containing reviews of scientific progress in the year proceeding each publication (pg. 159–160). Summaries of Eunice Foote’s findings were also reported in the New York Daily Tribune, Canadian Journal of Industry, Science and Art, and Scientific American as well as the European journals Jahresbericht in 1856 and the Edinburgh New Philosophical Journal in 1857. However, Eunice’s brief recognition was not complete. Both European summaries omitted her direct conclusions about the impact of carbon dioxide on climate, and the summary written in the Edinburgh New Philosophical Journal misrefers to the scientist as “Elisha Foote”, Eunice’s husband. Meanwhile, Foote was praised in the September 1856 issue of Scientific American titled "Scientific Ladies.
To restore the workability, the silversmith would anneal the piece—that is, heat it to a dull red and then quench it in water—to relieve the stresses in the material and return it to a more ductile state. Hammering required more time than all other silver manufacturing processes, and therefore accounted for the majority of labor costs. Silversmiths would then seam parts together to create complex and artistic items, sealing the gaps with a solder of 80 wt% silver and 20 wt% bronze. Finally, they would file and polish their work to remove all seams, finishing off with engraving and stamping the smith's mark. The American revolutionary Paul Revere was regarded as one of the best silversmiths from this “Golden Age of American Silver.” Following the Revolutionary War, Revere acquired and made use of a silver rolling mill from England. Not only did the rolling mill increase his rate of production--hammering and flattening silver took most of a silversmith’s time--he was able to roll and sell silver of appropriate, uniform thickness to other silversmiths. He retired a wealthy artisan, his success partly due to this strategic investment.

No results under this filter, show 131 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.