Sentences Generator
And
Your saved sentences

No sentences have been saved yet

41 Sentences With "sparging"

How to use sparging in a sentence? Find typical usage patterns (collocations)/phrases/context for "sparging" and check conjugation/comparative form for "sparging". Mastering all the usages of "sparging" from sentence examples published by news publications.

Sparging is trickling water through the grain to extract sugars. This is a delicate step, as the wrong temperature or pH will extract tannins from the chaff (grain husks) as well, resulting in a bitter brew. Typically, 1.5 times more water is used for sparging than was for mashing. Sparging is typically conducted in a lauter tun.
Many sparging processes, such as solvent removal, use air as the sparging gas. To remove oxygen, or for sensitive solutions or reactive molten metals, a chemically inert gas such as nitrogen, argon, or helium is used.
Fly sparging (or German sparging), which is used by commercial breweries and many homebrewers, uses continuous process sparging. When the wort reaches a desired level (typically about ) above the grainbed, water is added at the same slow rate that wort is being drained. The wort gradually becomes weaker and weaker, and at a certain point, they stop adding water. This results in greater yields.
When it comes to situ air sparging it became an intricate phase process that was proven to be successful in Europe since the 1980s. Currently, there have been further development into bettering the engineering design and process of air sparging.
In environmental chemistry, air sparging is an in situ remediation technique that removes volatile pollutants from contaminated groundwater and soil.
In chemistry, sparging, also known as gas flushing in metallurgy, is a technique in which a gas is bubbled through a liquid in order to remove other dissolved gas(es) and/or dissolved volatile liquid(s) from that liquid. It is a method of degassing. According to Henry's law, the concentration of each gas in a liquid is proportional to the partial pressure of that gas (in the gaseous state) in contact with the liquid. Sparging introduces a gas that has little or no partial pressure of the gas(es) to be removed, and increases the area of the gas-liquid interface, which encourages some of the dissolved gas(es) to diffuse into the sparging gas before the sparging gas escapes from the liquid.
English sparging (or batch sparging) drains the wort completely from the mash, after which more water is added, held for a while at and then drained again. The second draining can be used in making a lighter-bodied low-alcohol beer known as small beer, or can be added to the first draining. Some homebrewers use English sparging, except that the second batch of water is only held long enough for the grain bed to settle, after which recirculation and draining occurs.Lauter and Clear Lautering is the process of separating sweet wort from mashed grain.
For example, arsenic- contaminated groundwater were treated by air sparging and what the treatment does is remove arsenic at certain percentage using solution of iron and arsenic only at a molar ratio of 2. Treatment using air sparging is beneficial as groundwater contains high amounts of dissolved iron, which contains the theoretical capacity for the treatment.
Water removal is accomplished either by sparging with a constant stream of dry nitrogen or by vacuum outgassing with the use of a vacuum pump system. Using nitrogen sparging or vacuum outgassing also protects the reaction mixture from undesirable oxidation processes. Structure of Lactylate Species The manufacturing process does not produce chemically pure lactylates (e.g. stearoyl-2-lactylate) for two reasons.
Some chemical techniques may be implemented using nanomaterials. Physical treatment techniques include, but are not limited to, pump and treat, air sparging, and dual phase extraction.
Structural metal such as chromium, nickel, and iron must be removed for corrosion control. A water content reduction purification stage using HF and helium sweep gas was specified to run at 400 °C. Oxide and sulfur contamination in the salt mixtures were removed using gas sparging of HF – H2 mixture, with the salt heated to 600 °C. Structural metal contamination in the salt mixtures were removed using hydrogen gas sparging, at 700 °C.
As the contaminants move into the soil, a soil vapor extraction system is usually used to remove vapors."Air Sparging", The Center for Public Environmental Oversight (CPEO). Retrieved 2009-11-29.
Lauter tun. Lautering, a process in brewing beer, involves brewers separating the mash into the clear liquid wort and the residual grain. Lautering usually consists of three steps: mashout, recirculation, and sparging.
However, a system that utilizes nitrogen sparging (and then subsequently tank blanketing once the nitrogen reaches the vapor space) may have negative impact on the products involved. Nitrogen sparging creates a significantly higher amount of surface contact between the gas and the product, which in turn creates a much larger opportunity for undesired oxidation to occur. It is possible for nitrogen that is as much 99.9% free of oxygen to increase the amount of oxidation within the product due to the high amount of surface contact.
Air sparging is the process of blowing air directly into the ground water. As the bubbles rise, the contaminants are removed from the groundwater by physical contact with the air (i.e., stripping) and are carried up into the unsaturated zone (i.e., soil).
This is an alternative to the freeze-pump-thaw and sparging methods. In biological applications, sonication may be sufficient to disrupt or deactivate a biological material. For example, sonication is often used to disrupt cell membranes and release cellular contents. This process is called sonoporation.
Air sparging, also known as in situ air stripping and in situ volatilization is an in situ remediation technique, used for the treatment of saturated soils and groundwater contaminated by volatile organic compounds (VOCs) like petroleum hydrocarbons which is a widespread problem for the ground water and soil health. The vapor extraction has manifested itself into becoming very successful and practical when it comes to disposing of VOCs. It was used as a new development when it came to saturated zone remediation when using air sparging. Being that the act of it was to inject a hydrocarbon-free gaseous medium into the ground where contamination was found.
In biochemical engineering, sparging can remove low-boiling liquids from a solution. The low-boiling components evaporate more rapidly, so the gas bubbles remove more of them from the bulk solution containing higher-boiling components. It is an alternative to distillation, and it does not require heat.
Hydrogen porosity can be reduced by reducing the amount of hydrogen in the liquid aluminium alloy, by degassing or sparging. (Sometimes a small hydrogen concentration is intentionally maintained; some very fine hydrogen porosity can be preferable to internal voids caused by shrinkage.) Directional solidification can drive impurities to one end of the casting.
Air Sparging is a subsurface contaminant remediation technique that involves the injection of pressurized air into contaminated ground water causing hydrocarbons to change state from dissolved to vapor state. The air is then sent to the vacuum extraction systems to remove the contaminants. The extracted air or "off vapors" are treated to remove any toxic contaminants.
This lactic acid adds sourness to the beer. In order to promote fast bacterial fermentation and reduce yeast activity, the mash is kept between . The brewer extracts the wort by sparging when they believe enough acid has been produced. Some beers employing sour mashing are fermented with the addition of brewing yeast but without a boil.
Bioventing is a related technology, the goal of which is to introduce additional oxygen (or possibly other reactive gases) into the subsurface to stimulate biological degradation of the contamination. In situ air sparging is a remediation technology for treating contamination in groundwater. Air is injected and "sparged" through the groundwater and then collected via soil vapor extraction wells.
Surface air intrusion into the system reduces efficiency and can reduce the accuracy of system metrics. The tarp is used to stop vapors from breakthrough to the surface above. Soil vapor Extraction The air sparging system treats the off-gases (referred as contaminated vapors and extracted air). The vapor is treated with granulated activated carbon prior to release to the atmosphere.
Dimethylamine degradation impurities can be removed by sparging degraded samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is a derivative of formamide, the amide of formic acid. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.
First, the salt can be forced by physically applying a voltage to the salt with an inert electrode. The second, more common way, is to perform a chemical reaction in the salt which occurs at the desired voltage. For example, redox potential can be altered by sparging hydrogen and hydrogen fluoride into the salt or by dipping a metal into the salt.
Greater amounts of oxygen can be provided by contacting the water with pure oxygen or addition of hydrogen peroxide (H2O2) to the water. In some cases, slurries of solid calcium or magnesium peroxide are injected under pressure through soil borings. These solid peroxides react with water releasing H2O2 which then decomposes releasing oxygen. Air sparging involves the injection of air under pressure below the water table.
The grains are now washed in a process known as "sparging". This washing allows the brewer to gather as much of the fermentable liquid from the grains as possible. The process of filtering the spent grain from the wort and sparge water is called wort separation. The traditional process for wort separation is lautering, in which the grain bed itself serves as the filter medium.
In general, any boiling mass of high-concentration hydrogen peroxide at ambient pressure will produce vapor-phase hydrogen peroxide, which can detonate. This hazard is mitigated, but not entirely eliminated, with vacuum distillation. Other approaches for concentrating hydrogen peroxide are sparging and fractional crystallization. Hydrogen peroxide in concentrations of at least 35% appear on the US Department of Homeland Security's Chemicals of Interest list.
For the analysis of volatile compounds, a purge and trap (P&T;) concentrator system may be used to introduce samples. The target analytes are extracted by mixing the sample with water and purge with inert gas (e.g. Nitrogen gas) into an airtight chamber, this is known as purging or sparging. The volatile compounds move into the headspace above the water and are drawn along a pressure gradient (caused by the introduction of the purge gas) out of the chamber.
The process is begun early in the morning on a brewing day and takes a couple of hours. This time allows starches from the malt to convert to sugars that can be fermented. The wort is lautered or run off for brewing and then sparging, spraying the drained mash from above with more hot liquor for a couple more hours, extracts the remaining sugars., Stage four Large modern brewing coppers Wort is allowed to run down into the brew coppers or kettles on the 1st floor.
Brewing with several runnings is called parti gyle brewing.Brewingtechniques.com, Randy Mosher, "Parti-Gyle Brewing", Brewing Techniques, March/April 1994 The sweet wort collected from sparging is put into a kettle, or "copper" (so called because these vessels were traditionally made from copper), and boiled, usually for about one hour. During boiling, water in the wort evaporates, but the sugars and other components of the wort remain; this allows more efficient use of the starch sources in the beer. Boiling also destroys any remaining enzymes left over from the mashing stage.
Derelict soils occur where industrial contamination or other development activity damages the soil to such a degree that the land cannot be used safely or productively. Remediation of derelict soil uses principles of geology, physics, chemistry and biology to degrade, attenuate, isolate or remove soil contaminants to restore soil functions and values. Techniques include leaching, air sparging, soil conditioners, phytoremediation, bioremediation and Monitored Natural Attenuation (MNA). An example of diffuse pollution with contaminants is copper accumulation in vineyards and orchards to which fungicides are repeatedly applied, even in organic farming.
A. caldus is capable of oxidizing reduced inorganic sulfur compounds along with other substrates including molecular hydrogen, and formate, in addition to numerous organic compounds and sulfide minerals. It displays chemolithotrophic growth when exposed to substrates containing sulfur, tetrathionate, or thiosulfate, with sulfate being produced as the end product. Reduced sulfur compounds are used by A. caldus to support its autotrophic growth in an environment which lacks sunlight. The growth of A. caldus is enhanced when the air used for sparging, a process by which bubbles of a chemically inert gas are pumped through a liquid, is supplemented with 2% (w/v) CO2.
Lautering has two stages: first wort run-off, during which the extract is separated in an undiluted state from the spent grains, and sparging, in which extract that remains with the grains is rinsed off with hot water. Boiling the wort ensures its sterility, helping to prevent contamination with undesirable microbes. During the boil, hops are added, which contribute aroma and flavour compounds to the beer, especially their characteristic bitterness. Along with the heat of the boil, they cause proteins in the wort to coagulate and the pH of the wort to fall, and they inhibit the later growth of certain bacteria.
The result of the mashing process is a sugar-rich liquid or "wort", which is then strained through the bottom of the mash tun in a process known as lautering. Prior to lautering, the mash temperature may be raised to about (known as a mashout) to free up more starch and reduce mash viscosity. Additional water may be sprinkled on the grains to extract additional sugars (a process known as sparging). The wort is moved into a large tank known as a "copper" or kettle where it is boiled with hops and sometimes other ingredients such as herbs or sugars.
Lauter tun Lautering is the separation of the wort (the liquid containing the sugar extracted during mashing) from the grains. This is done either in a mash tun outfitted with a false bottom, in a lauter tun, or in a mash filter. Most separation processes have two stages: first wort run-off, during which the extract is separated in an undiluted state from the spent grains, and sparging, in which extract which remains with the grains is rinsed off with hot water. The lauter tun is a tank with holes in the bottom small enough to hold back the large bits of grist and hulls (the ground or milled cereal).
However, the trail has now been extended several kilometers northwest, past the Fremont neighborhood toward Ballard. "PeaceWorks Park" anti-war protest at Gas Works, 1990 The soil and groundwater of the site was contaminated during operation as a gasification plant. The 1971 Master Plan called for "cleaning and greening" the park through bio- phytoremediation. Although the presence of organic pollutants had been substantially reduced by the mid-1980s, the US Environmental Protection Agency and Washington State Department of Ecology required additional measures, including removing and capping wastes, and air sparging in the southeast portion of the site to try to remove benzene that was a theoretical source of pollutants reaching Lake Union via ground water.
Retrieved 29 September 2008 Nearly all beer includes barley malt as the majority of the starch. This is because of its fibrous husk, which is important not only in the sparging stage of brewing (in which water is washed over the mashed barley grains to form the wort) but also as a rich source of amylase, a digestive enzyme that facilitates conversion of starch into sugars. Other malted and unmalted grains (including wheat, rice, oats, and rye, and, less frequently, maize (corn) and sorghum) may be used. In recent years, a few brewers have produced gluten-free beer made with sorghum with no barley malt for people who cannot digest gluten-containing grains like wheat, barley, and rye.
Bioventing is a process that increases the oxygen or air flow into the unsaturated zone of the soil which increases the rate of natural in situ degradation of the targeted hydrocarbon contaminant. Approaches for oxygen addition below the water table include recirculating aerated water through the treatment zone, addition of pure oxygen or peroxides, and air sparging. Recirculation systems typically consist of a combination of injection wells or galleries and one or more recovery wells where the extracted groundwater is treated, oxygenated, amended with nutrients and reinjected. However, the amount of oxygen that can be provided by this method is limited by the low solubility of oxygen in water (8 to 10 mg/L for water in equilibrium with air at typical temperatures).
Laboratory scale spargers (also known as gas diffusing stones or diffusors) as well as scrubbers, and gas-washing bottles (or Drechsel bottles) are similar glassware items which may use a fritted glass piece fused to the tip of a gas-inlet tube. This fritted glass tip is placed inside the vessel with liquid inside during use such that the fritted tip is submerged in the liquid. To maximize surface area contact of the gas to the liquid, a gas stream is slowly blown into the vessel through the fritted glass tip so that it breaks up the gas into many tiny bubbles. The purpose of sparging is to saturate the enclosed liquid with the gas, often to displace another gaseous component.
Aircraft maintenance operations at Pease AFB generated hazardous waste, including spent degreasers, solvents, paint strippers, jet fuels, and others, which contaminated soils and groundwater. Environmental investigations began in 1983 under the Air Force "Restoration Installation Program". In 1990, Pease AFB was placed on the National Priorities List of Superfund sites. The site's contamination is addressed in twelve long-term remedial phases, mainly soil excavation and disposal, vertical containment walls installed in the subsurface and groundwater extraction wells, soil vapor extraction and air sparging to treat petroleum and solvent contamination, and where groundwater extraction and treatment efforts are uncertain (zone 3) improvement thereof and wellhead preparing treatment capability for the Haven water supply well. At two sites a permeable reactive barrier was installed to intercept and destroy the groundwater contamination (sites 49 and 73).

No results under this filter, show 41 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.