Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"nonradioactive" Definitions
  1. not of, caused by, or exhibiting radioactivity : not radioactive

39 Sentences With "nonradioactive"

How to use nonradioactive in a sentence? Find typical usage patterns (collocations)/phrases/context for "nonradioactive" and check conjugation/comparative form for "nonradioactive". Mastering all the usages of "nonradioactive" from sentence examples published by news publications.

She glows in the dark, but in an extremely healthy, nonradioactive way.
And the lutetium should have decayed to a nonradioactive material within a few months.
What they do,according to O*NET: Take X-rays and CAT scans or administer nonradioactive materials into patient's blood stream for diagnostic purposes.
Put together, he can show you how to calm your mind, develop positive habits, and keep your skin glowing (in a totally nonradioactive way) while you're living out the rest of your days beneath ground in comfort and style.
A much larger, nonradioactive deposit of bastnaesite was found on adjoining land.
The portion of the total radiation dose (in air) contributed by each isotope plotted against time after the Chernobyl disaster. Caesium-137 became the primary source of radiation about 200 days after the accident.Data from The Radiochemical Manual and Wilson, B. J. (1966) The Radiochemical Manual (2nd ed.). Nonradioactive caesium compounds are only mildly toxic, and nonradioactive caesium is not a significant environmental hazard.
For applications in boron neutron capture therapy (BNCT), derivatives of closo-dodecaborate increase the specificity of neutron irradiation treatment. Neutron irradiation converts nonradioactive dodecaborate containing 10B to 11B, which upon fission process emits an alpha particle near the tumor.
The radioactive isotope caesium-137 has a half-life of about 30 years and is used in medical applications, industrial gauges, and hydrology. Nonradioactive caesium compounds are only mildly toxic, but the pure metal's tendency to react explosively with water means that caesium is considered a hazardous material, and the radioisotopes present a significant health and ecological hazard in the environment.
The evolution of organisms that are able to survive acute irradiation doses of 15,000 Gy is difficult to explain given the apparent absence of highly radioactive habitats on Earth over geologic time. Thus, it seems more likely that the natural selection pressure for the evolution of radiation-resistant bacteria was chronic exposure to nonradioactive forms of DNA damage, in particular those promoted by desiccation.
Iodine is required by higher animals to synthesize thyroid hormones, which contain the element. Because of this function, radioisotopes of iodine are concentrated in the thyroid gland along with nonradioactive iodine. In the case of a nuclear accident, the radioactive iodine-131 (131I), which has a high fission product yield, is released into the environment. 131I concentrates in the thyroid, and may cause cancer.
Founded in 1990 the company concentrated in the early days on commercialising a nonradioactive sequencing technology platform, patented by Prof. Pohl one of the founder of GATC. The direct blotting electrophoresis system, the GATC 1500 was utilised in the European Saccharomyces cerevisiae genome project. In 1996 started the transformation from an instrument manufacturer to a service provider in the field of DNA and RNA sequencing.
The above mentioned conditioning makes the gas suitable for a number of applications in fuel cells. Chalcogels were shown to be very effective at capturing ionic forms of Tc-99 and U-238, as well as nonradioactive gaseous iodine (i.e., a surrogate for I-129(2)), irrespective of the sorbent polarity. The capture efficiencies for Tc-99 and U-238 varied between the different sorbents, ranging from 57.3-98.0% and 68.1-99.4%, respectively.
In quantities of more than about , caesium is shipped in hermetically sealed, stainless steel containers. The chemistry of caesium is similar to that of other alkali metals, in particular rubidium, the element above caesium in the periodic table. As expected for an alkali metal, the only common oxidation state is +1. Some small differences arise from the fact that it has a higher atomic mass and is more electropositive than other (nonradioactive) alkali metals.
The simplest form of an organic molecule is the hydrocarbon—a large family of organic molecules that are composed of hydrogen atoms bonded to a chain of carbon atoms. A hydrocarbon backbone can be substituted by other atoms, known as heteroatoms. Common heteroatoms that appear in organic compounds include oxygen, nitrogen, sulfur, phosphorus, and the nonradioactive halogens, as well as the metals lithium and magnesium. Organic compounds containing bonds to metal are known as organometallic compounds (see below).
Iodine deficiency affects about two billion people and is the leading preventable cause of intellectual disabilities. Iodine is required by higher animals, which use it to synthesize thyroid hormones, which contain the element. Because of this function, radioisotopes of iodine are concentrated in the thyroid gland along with nonradioactive iodine. The radioisotope iodine-131, which has a high fission product yield, concentrates in the thyroid, and is one of the most carcinogenic of nuclear fission products.
Liquid FLiBe salt The liquid fluoride thorium reactor (LFTR; often pronounced lifter) is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based, molten, liquid salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.
Like all metal cations, Cs+ forms complexes with Lewis bases in solution. Because of its large size, Cs+ usually adopts coordination numbers greater than 6, the number typical for the smaller alkali metal cations. This difference is apparent in the 8-coordination of CsCl. This high coordination number and softness (tendency to form covalent bonds) are properties exploited in separating Cs+ from other cations in the remediation of nuclear wastes, where 137Cs+ must be separated from large amounts of nonradioactive K+..
A suitable alternative to radioimmunoassay would substitute a nonradioactive signal in place of the radioactive signal. When enzymes (such as horseradish peroxidase) react with appropriate substrates (such as ABTS or TMB), a change in color occurs, which is used as a signal. However, the signal has to be associated with the presence of antibody or antigen, which is why the enzyme has to be linked to an appropriate antibody. This linking process was independently developed by Stratis Avrameas and G. B. Pierce.
Because biochemical processes can confuse and substitute caesium with potassium, excess caesium can lead to hypokalemia, arrhythmia, and acute cardiac arrest. But such amounts would not ordinarily be encountered in natural sources. The median lethal dose (LD50) for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. The principal use of nonradioactive caesium is as caesium formate in petroleum drilling fluids because it is much less toxic than alternatives, though it is more costly.
Recently, antibodies have been used to specifically visualize proteins, carbohydrates, and lipids. This process is called immunohistochemistry, or when the stain is a fluorescent molecule, immunofluorescence. This technique has greatly increased the ability to identify categories of cells under a microscope. Other advanced techniques, such as nonradioactive in situ hybridization, can be combined with immunochemistry to identify specific DNA or RNA molecules with fluorescent probes or tags that can be used for immunofluorescence and enzyme-linked fluorescence amplification (especially alkaline phosphatase and tyramide signal amplification).
The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. However, open-air nuclear testing between 1955 and 1980 contributed to this pool. The different isotopes of carbon do not differ appreciably in their chemical properties. This resemblance is used in chemical and biological research, in a technique called carbon labeling: carbon-14 atoms can be used to replace nonradioactive carbon, in order to trace chemical and biochemical reactions involving carbon atoms from any given organic compound.
In 1996, Palumbi was awarded a Pew Fellowhsip in Marine Conservation, which he used "to develop more rapid, cost-efficient, nonradioactive genetic test procedures to identify threatened species of cetaceans found in products taken from whale meat markets ... allow[ing] the focus of management efforts to be the individual, rather than the species or stock, and enables the tracing of particular whales from fishery to market." In 2003, he was elected a Fellow of the California Academy of Sciences and was awarded the Peter Benchley Ocean Award for Excellence in Science in 2011.
The experiments used mixtures with all 20 amino acids. For each individual experiment, 19 amino acids were "cold" (nonradioactive), and one was "hot" (radioactively tagged with 14C so they could detect the tagged amino acid later). They varied the "hot" amino acid in each round of the experiment, seeking to determine which amino acids would be incorporated into a protein following the addition of a particular type of synthetic RNA. The key first experiments were done with poly-U (synthetic RNA composed only of uridine bases, provided by Leon Heppel and Maxine Singer).
A log of the natural radioactivity of the formation along the borehole, measured in API units, particularly useful for distinguishing between sands and shales in a siliclastic environment. This is because sandstones are usually nonradioactive quartz, whereas shales are naturally radioactive due to potassium isotopes in clays, and adsorbed uranium and thorium. In some rocks, and in particular in carbonate rocks, the contribution from uranium can be large and erratic, and can cause the carbonate to be mistaken for a shale. In this case, the carbonate gamma ray is a better indicator of shaliness.
Thyroid blockade with (nonradioactive) potassium iodide is indicated for nuclear medicine scintigraphy with iobenguane/mIBG. This competitively inhibits radioiodine uptake, preventing excessive radioiodine levels in the thyroid and minimizing the risk of thyroid ablation ( in the case of I-131). The minimal risk of thyroid carcinogenesis is also reduced as a result. The FDA-approved dosing of potassium iodide for this purpose are as follows: infants less than 1 month old, 16 mg; children 1 month to 3 years, 32 mg; children 3 years to 18 years, 65 mg; adults 130 mg.
The glass forms include borosilicate glasses and phosphate glasses. Borosilicate nuclear waste glasses are used on an industrial scale to immobilize high level radioactive waste in many countries which are producers of nuclear energy or have nuclear weaponry. The glass waste forms have the advantage of being able to accommodate a wide variety of waste-stream compositions, they are easy to scale up to industrial processing, and they are stable against thermal, radiative, and chemical perturbations. These glasses function by binding radioactive elements to nonradioactive glass-forming elements.
The largest present-day use of nonradioactive caesium is in caesium formate drilling fluids for the extractive oil industry. Aqueous solutions of caesium formate (HCOO−Cs+)—made by reacting caesium hydroxide with formic acid—were developed in the mid-1990s for use as oil well drilling and completion fluids. The function of a drilling fluid is to lubricate drill bits, to bring rock cuttings to the surface, and to maintain pressure on the formation during drilling of the well. Completion fluids assist the emplacement of control hardware after drilling but prior to production by maintaining the pressure.
Caesium-134 has a half-life of 2.0652 years. It is produced both directly (at a very small yield because 134Xe is stable) as a fission product and via neutron capture from nonradioactive 133Cs (neutron capture cross section 29 barns), which is a common fission product. Caesium-134 is not produced via beta decay of other fission product nuclides of mass 134 since beta decay stops at stable 134Xe. It is also not produced by nuclear weapons because 133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.
By their chemical nature, rock minerals contain certain elements and not others; but in rocks containing radioactive isotopes, the process of radioactive decay generates exotic elements over time. By measuring the concentration of the stable end product of the decay, coupled with knowledge of the half life and initial concentration of the decaying element, the age of the rock can be calculated. Typical radioactive end products are argon from decay of potassium-40, and lead from decay of uranium and thorium. If the rock becomes molten, as happens in Earth's mantle, such nonradioactive end products typically escape or are redistributed.
In reality, radioactive elements do not always decay into nonradioactive ("stable") elements directly, instead, decaying into other radioactive elements that have their own half-lives and so on, until they reach a stable element. These "decay chains", such as the uranium-radium and thorium series, were known within a few years of the discovery of radioactivity and provided a basis for constructing techniques of radiometric dating. The pioneers of radioactivity were chemist Bertram B. Boltwood and the energetic Rutherford. Boltwood had conducted studies of radioactive materials as a consultant, and when Rutherford lectured at Yale in 1904, Reprinted by Juniper Grove (2007) .
Very few applications existed for caesium until the 1920s, when it came into use in radio vacuum tubes, where it had two functions; as a getter, it removed excess oxygen after manufacture, and as a coating on the heated cathode, it increased the electrical conductivity. Caesium was not recognized as a high-performance industrial metal until the 1950s. Applications for nonradioactive caesium included photoelectric cells, photomultiplier tubes, optical components of infrared spectrophotometers, catalysts for several organic reactions, crystals for scintillation counters, and in magnetohydrodynamic power generators. Caesium also was, and still is, used as a source of positive ions in secondary ion mass spectrometry (SIMS).
Caesium-137, with a half-life of 30.17 years, is one of the two principal medium-lived fission products, along with 90Sr, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident and is a major health concern for decontaminating land near the Fukushima nuclear power plant. 137Cs beta decays to barium-137m (a short-lived nuclear isomer) then to nonradioactive barium-137, and is also a strong emitter of gamma radiation. 137Cs has a very low rate of neutron capture and cannot be feasibly disposed of in this way, but must be allowed to decay.
The existence of nonradioactive isotopes of lighter elements had been suspected in studies of neon as early as 1913, and proven by mass spectrometry of light elements in 1920. The prevailing theory at the time was that isotopes of an element differ by the existence of additional protons in the nucleus accompanied by an equal number of nuclear electrons. In this theory, the deuterium nucleus with mass two and charge one would contain two protons and one nuclear electron. However, it was expected that the element hydrogen with a measured average atomic mass very close to , the known mass of the proton, always has a nucleus composed of a single proton (a known particle), and could not contain a second proton.
Naturally occurring strontium is nonradioactive and nontoxic at levels normally found in the environment, but 90Sr is a radiation hazard. 90Sr undergoes β− decay with a half-life of 28.79 years and a decay energy of 0.546 MeV distributed to an electron, an anti-neutrino, and the yttrium isotope 90Y, which in turn undergoes β− decay with half-life of 64 hours and decay energy 2.28 MeV distributed to an electron, an anti-neutrino, and 90Zr (zirconium), which is stable.Decay data from National Nuclear Data Center at the Brookhaven National Laboratory in the US. Note that 90Sr/Y is almost a pure beta particle source; the gamma photon emission from the decay of 90Y is so infrequent that it can normally be ignored. 90Sr has a specific activity of 5.21 TBq/g.
In nature, carbon exists as two stable, nonradioactive isotopes: carbon-12 (), and carbon-13 (), and a radioactive isotope, carbon-14 (), also known as "radiocarbon". The half-life of (the time it takes for half of a given amount of to decay) is about 5,730 years, so its concentration in the atmosphere might be expected to decrease over thousands of years, but is constantly being produced in the lower stratosphere and upper troposphere, primarily by galactic cosmic rays, and to a lesser degree by solar cosmic rays. These cosmic rays generate neutrons as they travel through the atmosphere which can strike nitrogen-14 () atoms and turn them into . The following nuclear reaction is the main pathway by which is created: : n + → + p where n represents a neutron and p represents a proton.
The chemicals used in most northern blots can be a risk to the researcher, since formaldehyde, radioactive material, ethidium bromide, DEPC, and UV light are all harmful under certain exposures. Compared to RT-PCR, northern blotting has a low sensitivity, but it also has a high specificity, which is important to reduce false positive results. The advantages of using northern blotting include the detection of RNA size, the observation of alternate splice products, the use of probes with partial homology, the quality and quantity of RNA can be measured on the gel prior to blotting, and the membranes can be stored and reprobed for years after blotting. For northern blotting for the detection of acetylcholinesterase mRNA the nonradioactive technique was compared to a radioactive technique and found as sensitive as the radioactive one, but requires no protection against radiation and is less time consuming.
Although it has a large nuclear spin (+), nuclear magnetic resonance studies can use this isotope at a resonating frequency of 11.7 MHz. alt=A graph showing the energetics of caesium-137 (nuclear spin: I=+, half-life of about 30 years) decay. With a 94.6% probability, it decays by a 512 keV beta emission into barium-137m (I=11/2-, t=2.55min); this further decays by a 662 keV gamma emission with an 85.1% probability into barium-137 (I=+). Alternatively, caesium-137 may decay directly into barium-137 by a 0.4% probability beta emission. The radioactive 135Cs has a very long half-life of about 2.3 million years, the longest of all radioactive isotopes of caesium. 137Cs and 134Cs have half-lives of 30 and two years, respectively. 137Cs decomposes to a short-lived 137mBa by beta decay, and then to nonradioactive barium, while 134Cs transforms into 134Ba directly. The isotopes with mass numbers of 129, 131, 132 and 136, have half-lives between a day and two weeks, while most of the other isotopes have half-lives from a few seconds to fractions of a second.
In addition to chemical, nonradioactive carcinogens, tobacco and tobacco smoke contain small amounts of lead-210(210Pb) and polonium-210 (210Po) both of which are radioactive carcinogens. The presence of polonium-210 in mainstream cigarette smoke has been experimentally measured at levels of 0.0263–0.036 pCi (0.97–1.33 mBq), which is equivalent to about 0.1 pCi per milligram of smoke (4 mBq/mg); or about 0.81 pCi of lead-210 per gram of dry condensed smoke (30 Bq/kg). Research by NCAR radiochemist Ed Martell suggested that radioactive compounds in cigarette smoke are deposited in "hot spots" where bronchial tubes branch, that tar from cigarette smoke is resistant to dissolving in lung fluid and that radioactive compounds have a great deal of time to undergo radioactive decay before being cleared by natural processes. Indoors, these radioactive compounds can linger in secondhand smoke, and greater exposure would occur when these radioactive compounds are inhaled during normal breathing, which is deeper and longer than when inhaling cigarettes. Damage to the protective epithelial tissue from smoking only increases the prolonged retention of insoluble polonium-210 compounds produced from burning tobacco.
It is a two-dimensional graphical representation in the Segrè-arrangement with the neutron number N on the abscissa and the proton number Z on the ordinate. Each nuclide is represented at the intersection of its respective neutron and proton number by a small square box with the chemical symbol and the nucleon number A. By columnar subdivision of such a field, in addition to ground states also nuclear isomers can be shown. The coloring of a field (segmented if necessary) shows in addition to the existing text entries the observed types of radioactive decay of the nuclide and a rough classification of their relative shares: stable, nonradioactive nuclides completely black, primordial radionuclides partially black, proton emission orange, alpha decay yellow, beta plus decay/electron capture red, isomeric transition (gamma decay, internal conversion) white, beta minus decay blue, spontaneous fission green, cluster emission violet, neutron emission light blue. For each radionuclide its field includes (if known) information about its half-life and essential energies of the emitted radiation, for stable nuclides and primordial radionuclides there are data on mole fraction abundances in the natural isotope mixture of the corresponding chemical element.

No results under this filter, show 39 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.