Sentences Generator
And
Your saved sentences

No sentences have been saved yet

43 Sentences With "noninvasively"

How to use noninvasively in a sentence? Find typical usage patterns (collocations)/phrases/context for "noninvasively" and check conjugation/comparative form for "noninvasively". Mastering all the usages of "noninvasively" from sentence examples published by news publications.

Apple's other plans in health include a sensor to noninvasively track blood glucose, CNBC previously reported.
Similarly, the brain can learn to interpret new types of sensory information even when it's delivered noninvasively using, for example, magnetic pulses.
They are part of a secret initiative to develop sensors that can noninvasively and continuously monitor blood sugar levels to better treat diabetes, three people familiar with the matter .
"The ability to noninvasively monitor fetal development and predict the risk of preterm birth through circulating markers could have a major impact on pregnancy monitoring and management," she said.
Although some text has previously been identified in ancient artifacts, "the En-Gedi manuscript represents the first severely damaged, ink-based scroll to be unrolled and identified noninvasively," Dr. Seales and his colleagues write in the journal Science Advances.
They are part of a super secret initiative, initially envisioned by the late Apple co-founder Steve Jobs, to develop sensors that can noninvasively and continuously monitor blood sugar levels to better treat diabetes, according to three people familiar with the matter.
The CyberKnife delivers high dose radiation beams to the trigeminal nerve to treat the condition noninvasively.
Wesseling KH, Settels JJ, De Wit B: The measurement of continuous finger arterial noninvasively in stationary subjects. In: Schmidt TH, Dembroski TM, Blümchen G. eds. Biological and physiological factors in cardiovascular disease.
Middle cerebral artery – peak systolic velocity is changing the way sensitized pregnancies are managed. This test is done noninvasively with ultrasound. By measuring the peak velocity of blood flow in the middle cerebral artery, a MoM (multiple of the median) score can be calculated. MoM of 1.5 or greater indicates severe anemia and should be treated with IUT.
Mount Sinai researchers have developed a method to measure retina damage from long term intravitreal injection using optimal coherence tomography angiography (OCTA). OCTA captures the motion of red blood cells in blood vessels noninvasively allowing researchers to measure blood flow in the macula and optic nerve. From this data they were able to show areas of cumulative damage.
The procedure is used in the treatment of coronary heart disease to restore blood flow. Radiofrequency ablation (RFA) is a method of removing aberrant tissue from within the body via minimally invasive procedures. Microwave ablation (MWA) is similar to RFA but at higher frequencies of electromagnetic radiation. High-intensity focused ultrasound (HIFU) ablation removes tissue from within the body noninvasively.
Middle cerebral artery - peak systolic velocity is changing the way sensitized pregnancies are managed. This test is done noninvasively with ultrasound. By measuring the peak velocity of blood flow in the middle cerebral artery, a MoM (multiple of the median) score can be calculated. MoM of 1.5 or greater indicates severe anemia and should be treated with intrauterine transfusion (IUT).
A direct method to measure functional connectivity is to observe how stimulation of one part of the brain will affect other areas. This can be done noninvasively in humans by combining transcranial magnetic stimulation with one of the neuroimaging tools such as PET, fMRI, or EEG. Massimini et al. (Science, September 30, 2005) used EEG to record how activity spreads from the stimulated site.
The ECoG data were then recorded from implanted subdural electrode grids placed directly on the surface of the cortex. MRI and computed tomography images were also obtained for each subject. The epileptogenic zones identified from preoperative EEG data were validated by observations from postoperative ECoG data in all three patients. These preliminary results suggest that it is possible to direct surgical planning and locate epileptogenic zones noninvasively using the described imaging and integrating methods.
Another advantage of FSCV is its ability to be used in vivo. Typical electrodes consist of small carbon fiber needles that are micrometers in diameter and able to be noninvasively inserted into live tissues. The size of the electrode also permits it to probe very specific brain regions. Thus, FSCV has proved to be effective in measuring chemical fluctuations of living organisms and has been used in conjunction with several behavioral studies.
Molecular imaging is broadly defined as the visualization of molecular and cellular processes on either a macro- or microscopic level. Because of its high spatial resolution and ability to noninvasively visualize internal organs, magnetic resonance (MR) imaging is widely believed to be an ideal platform for in vivo molecular imaging.Rodriguez I, Perez-Rial S, Gonzalez- Jiminez J, et al., Magnetic Resonance Methods and Applications in Pharmaceutical Research. J Pharma Sci, 28 Jan.
Photostimulation is the use of light to artificially activate biological compounds, cells, tissues, or even whole organisms. Photostimulation can be used to noninvasively probe various relationships between different biological processes, using only light. In the long run, photostimulation has the potential for use in different types of therapy, such as migraine headache. Additionally, photostimulation may be used for the mapping of neuronal connections between different areas of the brain by “uncaging” signaling biomolecules with light.
Photoacoustic microscopy has a wide range of applications in the biomedical field. Due to its ability to image a variety of molecules based on optical wavelength, photoacoustic microscopy can be used to gain functional information about the body noninvasively. Blood flow dynamics and oxygen metabolic rates can be measured and correlated to studies of atherosclerosis or tumor proliferation. Exogenous agents can be used to bind to cancerous tissue, enhancing image contrast and aiding in surgical removal.
H.F. Zhang, K. Maslov, M.L. Li, G. Stoica, L.H.V. Wang, "In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy", Opt. Express 14 (2006) 9317-9323. lymph nodesI. Stoffels, S. Morscher, I. Helfrich, U. Hillen, J. Lehy, N.C. Burton, T.C.P. Sardella, J. Claussen, T.D. Poeppel, H.S. Bachmann, A. Roesch, K. Griewank, D. Schadendorf, M. Gunzer, J. Klode, "Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging", Science Translational Medicine 7 (2015).
Medical imaging is often perceived to designate the set of techniques that noninvasively produce images of the internal aspect of the body. In this restricted sense, medical imaging can be seen as the solution of mathematical inverse problems. This means that cause (the properties of living tissue) is inferred from effect (the observed signal). In the case of medical ultrasound, the probe consists of ultrasonic pressure waves and echoes that go inside the tissue to show the internal structure.
Octreotide is used in nuclear medicine imaging by labeling with indium-111 (Octreoscan) to noninvasively image neuroendocrine and other tumours expressing somatostatin receptors.Medscape: Octreoscan review More recently, it has been radiolabeled with carbon-11 as well as gallium-68, enabling imaging with positron emission tomography (PET), which provides higher resolution and sensitivity. Octreotide can also be labeled with a variety of radionuclides, such as yttrium-90 or lutetium-177, to enable peptide receptor radionuclide therapy (PRRT) for the treatment of unresectable neuroendocrine tumours.
Common applications are to noninvasively examine the heart or to find flaws in manufactured materials such as welds. Single-element (non-phased array) probes, known technically as monolithic probes, emit a beam in a fixed direction. To test or interrogate a large volume of material, a conventional probe must be physically scanned (moved or turned) to sweep the beam through the area of interest. In contrast, the beam from a phased array probe can be focused and swept electronically without moving the probe.
Measuring the dissolved oxygen through a multi-parameter photometer Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium. It can be measured with a dissolved oxygen probe such as an oxygen sensor or an optode in liquid media, usually water. The standard unit of oxygen saturation is percent (%). Oxygen saturation can be measured regionally and noninvasively.
Brittany Wenger, who was 17, won the grand prize with her "Global Neural Network Cloud Service for Breast Cancer". Designed to noninvasively diagnose malignant cancerous tumors, it successfully detected over 99% of malignant breast tumors in a test set. She received $50,000, a trip to the Galapagos Islands, mentoring and internship opportunities for winning the competition. Iván Hervías Rodríguez, Marcos Ochoa, and Sergio Pascual, all of Spain, won the 15-16 age group using microscopy to examine microscopic creatures in aquatic ecosystems.
The ability to detect tissues that contain the active form of an enzyme at certain time has clear value in medicine. Specific contrast agents that provide enhancement only in the presence of active enzymes could allow doctors to conclusively and noninvasively assay for a wide variety of enzymatic diseases, such as fructose bisphosphatase deficiency. However, such diagnostic tools would require the development of contrast agents specific to the enzyme of interest, and would necessitate the development of methods for delivering the agents to cells (see “Limitations” below).
Holder was able to demonstrate in 1992 that changes of intracerebral impedance can be detected noninvasively through the cranium by surface electrode measurements. Animal models of experimental stroke or seizure showed increases of impedance of up to 100% and 10%, respectively. More recent EIT systems offer the option to apply alternating currents from non-adjacent drive electrodes. So far, cerebral EIT has not yet reached the maturity to be adopted in clinical routine, yet clinical studies are currently being performed on stroke and epilepsy.
Another new treatment called HIFU (High Intensity Focused Ultrasound) takes advantage of the thermal energy characteristics of ultrasound. HIFU uses an ultrasound device that is able to precisely focus ultrasound waves at a target tissue or specific group of cells. At the focus of this ultrasound energy, the temperature can reach excesses of 80°C which results in nearly spontaneous coagulative necrosis or cell death without harming neighboring cells. This treatment greatly expands the ability of doctors to be able to destroy cancer cells noninvasively.
Hemoglobin can be tracked noninvasively, to build an individual data set tracking the hemoconcentration and hemodilution effects of daily activities for better understanding of sports performance and training. Athletes are often concerned about endurance and intensity of exercise. The sensor uses light-emitting diodes that emit red and infrared light through the tissue to a light detector, which then sends a signal to a processor to calculate the absorption of light by the hemoglobin protein. This sensor is similar to a pulse oximeter, which consists of a small sensing device that clips to the finger.
Tumor-associated microvesicles are abundant in the blood, urine, and other body fluids of patients with cancer, and are likely involved in tumor progression. They offer a unique opportunity to noninvasively access the wealth of biological information related to their cells of origin. The quantity and molecular composition of microvesicles released from malignant cells varies considerably compared with those released from normal cells. Thus, the concentration of plasma microvesicles with molecular markers indicative of the disease state may be used as an informative blood-based biosignature for cancer .
How to deliver the viral vector into the retina is probably the main obstacle to making gene therapy a practical treatment for color blindness. Because the virus has to be injected directly by using a needle to penetrate the sclera of the eye, the treatment may be highly unpleasant and is a risk for eye infection. Without a way to deliver the virus noninvasively, the treatment is rather risky for the benefit gained. It is not known yet how frequently the gene needs to be injected to maintain trichromacy among congenitally colorblind individuals.
ECoG has recently emerged as a promising recording technique for use in brain-computer interfaces (BCI). BCIs are direct neural interfaces that provide control of prosthetic, electronic, or communication devices via direct use of the individual’s brain signals. Brain signals may be recorded either invasively, with recording devices implanted directly into the cortex, or noninvasively, using EEG scalp electrodes. ECoG serves to provide a partially invasive compromise between the two modalities – while ECoG does not penetrate the blood–brain barrier like invasive recording devices, it features a higher spatial resolution and higher signal-to-noise ratio than EEG.
Studies have shown that focused ultrasound bursts can noninvasively be used to disrupt tight junctions in desired locations of BBB, allowing for the increased passage of particles at that location. This disruption can last up to four hours after burst administration. Focused ultrasound works by generating oscillating microbubbles, which physically interact with the cells of the BBB by oscillating at a frequency which can be tuned by the ultrasound burst. This physical interaction is believed to cause cavitation and ultimately the disintegration of the tight junction complexes which may explain why this effect lasts for several hours.
Much argument still exists in whether the assumptions behind phase resetting are valid for analysis of neural activity leading to synchronization and other neural properties. Event-related Potential (ERP) is a commonly used measure to the response of the brain to different events and can be measured via electroencephalography (EEG). EEGs can be used to measured electrical activity throughout the brain noninvasively. The Phase Response Curve operates under the following criteria and must occur to prove that phase resetting is the cause of the behavior: #An oscillation must already be occurring before it can reset in its phase.
Ogawa discovered the principle which is now widely used to functionally and physiologically image the brain, particularly the human brain. He built on the technology of magnetic resonance imaging by using the difference in blood oxygenation level to generate a brain map corresponding to blood flow to active neurons. This helped to map the functional activity of the brain noninvasively, adding to the structural mapping provided by MRI. FMRI is now widely used in biology, neurobiology, psychology, neurology and other branches of research and to diagnose the physiological basis of mental illnesses and organic brain dysfunction in clinical medicine.
In most of the central nervous system, neurons communicate exclusively by sending each other action potentials, colloquially known as "spikes". It is therefore thought that all of the information a sensory neuron encodes about the outside world can be inferred by the pattern of its spikes. Current experimental techniques cannot measure individual spikes noninvasively. A typical single neuron experiment will consist of isolating a neuron (that is, navigating the neuron until the experimentor finds a neuron which spikes in response to the type of stimulus to be presented, and (optionally) determining that all of the spikes observed indeed come from a single neuron), then presenting a stimulus protocol.
Gross anatomy is studied using both invasive and noninvasive methods with the goal of obtaining information of the macroscopic structure and organization of organs and organ systems. Among the most common methods of study is dissection, in which the corpse of an animal or a human cadaver is surgically opened and its organs studied. Endoscopy, in which a video camera-equipped instrument is inserted through a small incision in the subject, may be used to explore the internal organs and other structures of living animals. The anatomy of the circulatory system in a living animal may be studied noninvasively via angiography, a technique in which blood vessels are visualized after being injected with an opaque dye.
Patients are instructed to call immediately for pain that cannot be controlled with over the counter pain medication or if vision decreases, to not rub the eye and to wear the shield at night for several days after surgery. If 5-FU was used during surgery or if no anti- fibrotic agent was applied, 5 mg 5-FU daily can be injected in the 7–14 postoperative days. In the following days to weeks sutures that hold the scleral flap down can be cut by laser suture lysis to titrate the intraocular pressure down by improving outflow. In laser suture lysis a red light laser and a contact lens are used to penetrate noninvasively the overlying conjunctiva and cut the black nylon suture.
CTCs are pivotal to understanding the biology of metastasis and promise potential as a biomarker to noninvasively evaluate tumor progression and response to treatment. However, isolation and characterization of CTCs represent a major technological challenge, since CTCs make up a minute number of the total cells in circulating blood, 1–10 CTCs per mL of whole blood compared to a few million white blood cells and a billion red blood cells. Therefore, the major challenge for CTC researchers is the prevailing difficulty of CTC purification that allows the molecular characterization of CTCs. Several methods have been developed to isolate CTCs in the peripheral blood and essentially fall into two categories: biological methods and physical methods, as well as hybrid methods that combine both strategies.
She also developed another radiotracer, as these "tagged" molecules are called, that first showed that cocaine's distribution in the human brain parallels its effects on behavior. Fowler played a central role in the development of a fluorine-18-labeled glucose molecule (FDG) enabling human brain glucose metabolism to be measured noninvasively. This positron-emitting molecule, together with positron emission tomography (PET) imaging, has become a mainstay for brain-imaging studies in schizophrenia, aging and cancer. Another of her major accomplishments was the development of the first radiotracers to map monoamine oxidase (MAO), a brain enzyme that regulates the levels of other nerve-cell communication chemicals and one of the two major enzymes involved in neurotransmitter regulation in the brain and peripheral organs.
SLP is simple to use, accurate and cost effective, is self-calibrating and does not require the use of plastic consumables, reducing cost, risk of cross infection and the device's carbon footprint. In conjunction with the Cambridge Veterinary School, proof of concept studies have indicated that the device is sensitive enough to noninvasively pick up respiratory movements in domestic animals (cats and dogs). Patient being scanned in horizontal position A totally “non-invasive” technique using structured light to measure pulmonary function was developed as long ago as the mid-1980s by a London group at the Royal Brompton Hospital working in close association with IBM (1-4). The technique used the distortion with movement of a structured pattern of light to calculate a volume or change in volume of a textured surface.
Anderson's contributions include laser hair removal, photodynamic therapy (use of light-activated localized drugs for cancer and macular degeneration), laser treatment of port- wine stains in children,How Laser Hair Removal Was Invented and basic research into the free electron laser for the selective destruction of lipids (i.e., fats) for possible treatment of acne, cellulite, and atherosclerosis, as well as various uses of photothermolysis using pulsed dye lasers. Anderson and colleagues invented a crude device to noninvasively remove fat by freezing it, in a process called cryolipolysis; and a startup company called Juniper Medical exclusively licensed patent filings on the invention from Massachusetts General Hospital when Juniper was founded; Juniper became Zeltiq Aesthetics. In the mid 2000s Anderson invented a tattoo ink designed to simplify tattoo removal called "InfinitInk".
Terahertz technology has the potential"Ned Potter, ABC News - T-Rays: The Future of Airport Security, the End of Suicide Bombers?" to safely, noninvasively and quickly image through different types of clothing and other concealment and confusion materials."Larry Hardesty, MIT News Office - A laser that generates terahertz rays — which can detect explosives — operates at higher temperatures than some thought possible" It has been hypothesized that because THz light is absorbed by explosive materials at certain frequencies it may be possible to find unique 'terahertz fingerprints'"Science Daily - Breakthrough in Terahertz Remote Sensing: Unique THz 'Fingerprints' Will Identify Hidden Explosives from a Distance" that can be distinguished from clothing or other materials. This has never been proved in a practical sense. The company's technology has been used by the Naval Surface Warfare Command to test the presence of different types of plastic explosives through clothing, including PETN (Pentaerythritol tetranitrate).
Quantitative assessment of ICP can be made noninvasively in two different ways: by measuring changes in diameter of the optic nerve sheath with an appropriate technique (ultrasound or MRI), or by using ophthalmodynamometry to determine the pressure in the central retinal vein, which is normally slightly higher (1- 2mmHg) than ICP. Intracranial hypertension also induces changes at the cellular or axonal level such as the swelling of the fibers of the optic nerve that form the innermost layer of the retina (so-called nerve fiber layer – NFL). The information provided by the classic ophthalmoscopy is however only qualitative and may be inconclusive during early phases of intracranial hypertension since it usually takes between two and four hours from the onset of ICP elevation for a papilledema to develop. A patented method that utilizes optical coherence tomography to measure the thickness of the nerve fiber layer and infers ICP from it laid claims of being able to detect the IH-induced thickening of the retina shortly after the onset of IH, but there has been no data that would support the claims or clarify the relationship between the NFL thickness and levels of ICP.

No results under this filter, show 43 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.