Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"immiscible" Definitions
  1. (of liquids) that cannot be mixed together
"immiscible" Synonyms
"immiscible" Antonyms

216 Sentences With "immiscible"

How to use immiscible in a sentence? Find typical usage patterns (collocations)/phrases/context for "immiscible" and check conjugation/comparative form for "immiscible". Mastering all the usages of "immiscible" from sentence examples published by news publications.

Since arriving at the park three months earlier, as they acclimated to their new setting and forged the sort of immiscible bonds that make Lycaon pictus one of the most social mammals in the world, the dogs had grown accustomed to a daily delivery of a freshly killed antelope to feast on.
Mercury, thallium, bismuth, and lead are immiscible with liquid silicon.
At low temperatures, the two types of solution can coexist as immiscible phases.
Emulsions and colloids are examples of immiscible phase pair combinations that do not physically separate.
For example, water and ethanol are miscible because they mix in all proportions. By contrast, substances are said to be immiscible if there are certain proportions in which the mixture does not form a solution. For one example, oil is not soluble in water, so these two solvents are immiscible. As another example, butanone (methyl ethyl ketone) is significantly soluble in water, but these two solvents are also immiscible because they are not soluble in all proportions.
Chalcopyrite in this environment is produced by concentration within a magmatic system. Chalcopyrite is an accessory mineral in Kambalda type komatiitic nickel ore deposits, formed from an immiscible sulfide liquid in sulfide-saturated ultramafic lavas. In this environment chalcopyrite is formed by a sulfide liquid stripping copper from an immiscible silicate liquid.
A multiphasic liquid is a mixture consisting of more than two immiscible liquid phases. Biphasic mixtures consisting of two immiscible phases are very common and usually consist of an organic solvent and an aqueous phase ("oil and water"). Multiphasic liquids can be used for selective liquid-liquid extractions or for decorative purposes, e.g. in cosmetics.
Compatibilization in polymer chemistry is the addition of a substance to an immiscible blend of polymers that will increase their stability. Polymer blends are typically described by coarse, unstable phase morphologies. This results in poor mechanical properties. Compatibilizing the system will make a more stable and better blended phase morphology by creating interactions between the two previously immiscible polymers.
Liquid-liquid extractions can be carried out on digital microfluidic device by taking advantage of immiscible liquids.9 Two droplets, one containing the analyte in aqueous phase, and the other an immiscible ionic liquid are present on the electrode array. The two droplets are mixed and the ionic liquid extracts the analyte, and the droplets are easily separable.
In (O/W) oil droplets are dispersed in water. On the other hand, (W/O) involves water droplets finely dispersed in oil. Double or multiple emulsion classification is similar to single emulsion classification, except the immiscible phases are separated by at least two surfactant thin films. In a (W/O/W) combination, an immiscible oil phase exists between two separate water phases.
Schematic of a separatory funnel showing two immiscible liquids, where 1 is any phase less dense than 2. Phase 1 is typically an organic solvent and 2 an aqueous phase. Laboratory-scale liquid-liquid extraction. Photograph of a separatory funnel in a laboratory scale extraction of 2 immiscible liquids: liquids are a diethyl ether upper phase, and a lower aqueous phase.
Microemulsion domains are usually characterized by constructing ternary-phase diagrams. Three components are the basic requirement to form a microemulsion: two immiscible liquids and a surfactant. The majority of microemulsions use oil and water as immiscible liquid pairs. If a cosurfactant is used, it may sometimes be represented at a fixed ratio to surfactant as a single component, and treated as a single "pseudo-component".
It is a common observation that when oil and water are poured into the same container, they separate into two phases or layers, because they are immiscible. In general, aqueous (or water-based) solutions, being polar, are immiscible with non-polar organic solvents (chloroform, toluene, hexane etc.) and form a two- phase system. However, in an ABS, both immiscible components are water-based. The formation of the distinct phases is affected by the pH, temperature and ionic strength of the two components, and separation occurs when the amount of a polymer present exceeds a certain limiting concentration (which is determined by the above factors).
When mischmetal, an alloy of lanthanide metals, is added to molten steel to remove oxygen and sulfur, stable oxysulfides are produced that form an immiscible solid.
If a mixture of polymers has lower configurational entropy than the components, they are likely to be immiscible in one another even in the liquid state.
Immiscible metals are unable to form alloys with each other. Typically, a mixture will be possible in the molten state, but upon freezing, the metals separate into layers. This property allows solid precipitates to be formed by rapidly freezing a molten mixture of immiscible metals. One example of immiscibility in metals is copper and cobalt, where rapid freezing to form solid precipitates has been used to create granular GMR materials.
If the indices of refraction of the two materials are similar, an immiscible mixture may be clear and give an incorrect determination that the two liquids are miscible.
Mustard as an emulsifier can stabilize a mixture of two or more immiscible liquids, such as oil and water. Added to Hollandaise sauce, mustard can inhibit curdling.Sawyer, p. 24.
In addition, melt inclusions can contain immiscible (non-miscible) melt phases. Their study is an exceptional way to find direct evidences for presence of two or more melts at entrapment.
Red line shows saturation Water is miscible with many liquids, including ethanol in all proportions. Water and most oils are immiscible usually forming layers according to increasing density from the top. This can be predicted by comparing the polarity. Water being a relatively polar compound will tend to be miscible with liquids of high polarity such as ethanol and acetone, whereas compounds with low polarity will tend to be immiscible and poorly soluble such as with hydrocarbons.
It is miscible with chloroform but immiscible with water. It is air sensitive. There is a safety hazard for this chemical compound. It can cause skin irritation, serious eye irritation, and respiratory irritation.
Methyl ethyl ketone is advantageous to acetone because the resulting ketazine is immiscible in the reaction mixture and can be separated by decantation. A similar process based on benzophenone has also been described..
Robinson, G.M.; Robinson, R. Biochem., 1934, 1687-1720. They studied these pigments by comparing color distributions in immiscible solutions after reactions with alkalis or ferric chloride.Robinson, G.M.; Robinson, R. Biochem., 1931, 1687-1705.
Because the two solutions used in this reaction are immiscible and the rate of reaction is high, this reaction mechanism tends to produce a small number of long polymer chains of high molecular weight.
There also exist metals that are immiscible in the liquid state. One with industrial importance is that liquid zinc and liquid silver are immiscible in liquid lead, while silver is miscible in zinc. This leads to the Parkes process, an example of liquid-liquid extraction, whereby lead containing any amount of silver is melted with zinc. The silver migrates to the zinc, which is skimmed off the top of the two-phase liquid, and the zinc is then boiled away, leaving nearly pure silver.
Carbon subsulfide is an organic chemical compound with the formula C3S2. This deep red liquid is immiscible with water but soluble in organic solvents. It readily polymerizes at room temperature to form a hard black solid.
Ion implantation can be used to achieve ion beam mixing, i.e. mixing up atoms of different elements at an interface. This may be useful for achieving graded interfaces or strengthening adhesion between layers of immiscible materials.
Miscibility of two materials is often determined optically. When the two miscible liquids are combined, the resulting liquid is clear. If the mixture is cloudy the two materials are immiscible. Care must be taken with this determination.
Homogenization (from "homogeneous;" Greek, homogenes: homos, same + genos, kind)homo-, word origin is the process of converting two immiscible liquids (i.e. liquids that are not soluble, in all proportions, one in another) into an emulsion (Mixture of two or more liquids that are generally immiscible). Sometimes two types of homogenization are distinguished: primary homogenization, when the emulsion is created directly from separate liquids; and secondary homogenization, when the emulsion is created by the reduction in size of droplets in an existing emulsion. Homogenization is achieved by a mechanical device called a homogenizer.
25, pp. 155–182. The reaction with simple alkoxide sources with disulfur dichloride gives the unbranched ROSSOR. They are immiscible in water, but dissolve in benzene or carbon tetrachloride. These species are less rigid than the thiosulfite esters.
Packed columns are used in a range of industries to allow intimate contact between two immiscible fluids which can be liquid/liquid or liquid/gas. The fluids are passed through in a counter current flow through a column.
In contrast, in an (O/W/O) combination the immiscible water phase separates two different oil phases. Image A is (O/W) emulsion. Image B is a (W/O) emulsion. Image C is a W/O/W multiple emulsion group.
A wide variety of two-phase solvent systems consisting of at least two immiscible liquids may be employed to provide the proper selectivity for the desired separation. Some types of countercurrent chromatography, such as dual flow CCC, feature a true countercurrent process where the two immiscible phases flow past each other and exit at opposite ends of the column. More often, however, one liquid acts as the stationary phase and is retained in the column while the mobile phase is pumped through it. The liquid stationary phase is held in place by gravity or by centrifugal force.
Figure 3: a) random copolymer blend with annealing b) gradient copolymer blend with annealing For the compatiabilization of immiscible blends, the gradient copolymer can be used by improving mechanical and optical properties of immiscible polymers and decreasing its dispersed phase to droplet size. The compatibilization has been tested by reduction in interfacial tension and steric hindrance against coalescence. This application is not available for block and graft copolymer because of its very low critical micelle concentration (cmc). However, the gradient copolymer, which has higher cmc and exhibits a broader interfacial coverage, can be applied to effective blend compatibilizers.
Polarized liquid interfaces have been used to examine the thermodynamics and kinetics of the transfer of charged species from one phase to another. Two main methods exist. The first is ITIES, "interfaces between two immiscible electrolyte solutions". The second is droplet experiments.
Usually, one electrolyte is an aqueous electrolyte composed of hydrophilic ions such as NaCl dissolved in water and the other electrolyte is a lipophilic salt such as tetrabutylammonium tetraphenylborate dissolved in an organic solvent immiscible with water such as nitrobenzene, or 1,2-dichloroethane.
With the proper choice of two floats, resistive chain level sensors can also be used to monitor for the presence of an interface between two immiscible liquids whose specific gravities are more than 0.6, but differ by as little as 0.1 unit.
Immiscible CO2 helps to saturate oil, resulting in swelling and reduction of viscosity of the liquid phase and consequently improving mobilization by extra driving pressure. Concomitantly, other gases and solvents may dissolve carbonate rock, leading to an increase in rock permeability and porosity.
Deposition of liquid polymer coating around core by polymer adsorbed at the interface formed between core material and vehicle phase. # Rigidization of coating: coating material is immiscible in vehicle phase and is made rigid. This is done by thermal, cross-linking, or dissolution techniques.
The extractant, including the host, must be substantially insoluble in the processed aqueous solutions to avoid being washed away. However, the difference in density between the immiscible phases, which plays an important role in conventional liquid-liquid extraction, is irrelevant in thin layer extraction.
A first-order analysis of the material may involve the separation of phases. Centrifugation, extraction, and filtration are examples of methods which separate material in different phases. Centrifugation is effective to separate phases that differ in density. Extraction is effective to separate immiscible liquid phases.
The adsorption of molecules of liquid phase at an interface occurs when this liquid phase is in contact with other immiscible phases that may be gas, liquid, or solidChattoraj, D.K. and Birdi, K.S. Adsorption and the Gibbs Surface Excess. New York: Plenum Publishing Company, 1984.
To allow for the winding and unwinding of the tape, the backing is coated with a release agent that somewhat prevents the tape from sticking to itself or the sticking of two adhesive layers (double-sided tapes). This is accomplished by using a material that enables the easy removal of favorable interactions at the adhesive-backing or adhesive-adhesive interface, or by making both surfaces immiscible in one another. Two common materials used in polyacrylate-based adhesive tapes are fluorosilicones and vinyl carbamates. Fluorosilicones are immiscible with the polyacrylates-based adhesive whereas the long tails of vinyl carbamates form a high crystalline structure that the adhesive cannot penetrate.
Three-phase flows are also of practical significance, and examples are as follows: # Gas-liquid-solid flows: this type of system occurs in two-phase fluidised bed and gas lift chemical reactors where a gas-liquid reaction is promoted by solid catalyst particles suspended in the mixture. Another example is in froth flotation as a method to separate minerals and carry out gas-liquid reactions in the presence of a catalyst. # Three-phase, gas-liquid-liquid flows: mixtures of vapors and two immiscible liquid phases are common in chemical engineering plants. Examples are gas-oil-water flows in oil recovery systems and immiscible condensate- vapor flows in steam/hydrocarbon condensing systems.
Coacervation-phase separation consists of three steps carried out under continuous agitation. # Formation of three immiscible chemical phases: liquid manufacturing vehicle phase, core material phase and coating material phase. # Deposition of coating: core material is dispersed in the coating polymer solution. Coating polymer material coated around core.
Equal mixtures of liquid and below will separate into two immiscible phases due to their dissimilarity (they follow different quantum statistics: atoms are bosons while atoms are fermions). Dilution refrigerators take advantage of the immiscibility of these two isotopes to achieve temperatures of a few millikelvins.
Liquids can form solutions with gases, solids, and other liquids. Two liquids are said to be miscible if they can form a solution in any proportion; otherwise they are immiscible. As an example, water and ethanol (drinking alcohol) are miscible whereas water and gasoline are immiscible.Silberberg, pp.
In this way, the chromium(VI) peroxide (unstable in the aqueous phase in which it is newly formed) is dissolved in the immiscible organic solvent. In this condition, it can be observed over a much longer period. CrO5 is unstable and decomposes on standing to form CrO3.
Situations caused by evaporation of flammable liquids into the air-filled void volume of a container may be limited by flexible container volume or by using an immiscible fluid to fill the void volume. Hydraulic tankers use displacement of water when filling a tank with petroleum.
The liquid-ammonia-procedure was developed by Commodore/KiON for polysilazane synthesis. It calls for adding chlorosilane or chlorosilane mixtures simultaneously to an excess of liquid ammonia. The resulting ammonium chloride dissolves in the liquid ammonia and phase separates from the polysilazane. Two immiscible liquids form.
Anacardic acid is a yellow liquid. It is partially miscible with ethanol and ether, but nearly immiscible with water. Chemically, anacardic acid is a mixture of several closely related organic compounds. Each consists of a salicylic acid substituted with an alkyl chain that has 15 or 17 carbon atoms.
Invasion percolation is a mathematical model of realistic fluid distributions for slow immiscible fluid invasion in porous media, in percolation theory. It was introduced by Wilkinson and Willemsen (1983).David Wilkinson and Jorge F Willemsen, "Invasion percolation: a new form of percolation theory", J. Phys. A: Math. Gen.
These include but are not limited to: semi-crystalline polyolefins, polyoxymethylene, and isotactic poly (4-methyl-1-pentene). One can also use blends of immiscible polymers, in which at least one polymer has a crystalline structure, such as polyethylene-polypropylene, polystyrene- polypropylene, and poly (ethylene terephthalate) - polypropylene blends.
Hydrocarbon-based surfactants are compounds that are amphiphilic (or amphipathic), having a hydrophilic, water interactive "end", referred to as their "head group", and a lipophilic "end", usually a long chain hydrocarbon fragment, referred to as their "tail". They congregate at low energy surfaces, including the air-water interface (lowering surface tension) and the surfaces of the water-immiscible droplets found in oil/water emulsions (lowering interfacial tension). At these surfaces they naturally orient themselves with their head groups in water and their tails either sticking up and largely out of water (as at the air-water interface) or dissolved in the water-immiscible phase that the water is in contact with (e.g. as the emulsified oil droplet).
Reactive compatibilization is the process of modifying a mixed immiscible blend of polymers to arrest phase separation and allow for the formation of a stable, long-term continuous phase. It is done via the addition of a reactive polymer, miscible with one blend component and reactive towards functional groups on the second component, which result in the "in-situ" formation of block or grafted copolymers. A large number of commercial polymeric products are derived from the blending of two or more polymers to achieve a favorable balance of physical properties. However, since most polymer blends are immiscible, it is rare to find a pair of polymers that both are miscible and have desired characteristics.
Polymerization-induced phase separation (PIPS) is the occurrence of phase separation in a multicomponent mixture induced by the polymerization of one or more components. The increase in molecular weight of the reactive component renders one or more components to be mutually immiscible in one another, resulting in spontaneous phase segregation.
Microphase separation is a situation similar to that of oil and water. Oil and water are immiscible - they phase separate. Due to incompatibility between the blocks, block copolymers undergo a similar phase separation. Because the blocks are covalently bonded to each other, they cannot demix macroscopically as water and oil.
Another example is the esterification of benzoic acid and n-butanol where the ester product is trapped and the butanol, immiscible with the water, flows back into the reactor. Removing water in the course of these esterifications shifts the chemical equilibrium in favor of ester formation, in accordance with Le Chatelier's principle.
The binary phase diagram of the mixture should be considered in designing ceramic- metal nanocomposites and measures have to be taken to avoid a chemical reaction between both components. The last point mainly is of importance for the metallic component that may easily react with the ceramic and thereby lose its metallic character. This is not an easily obeyed constraint because the preparation of the ceramic component generally requires high process temperatures. The safest measure thus is to carefully choose immiscible metal and ceramic phases. A good example of such a combination is represented by the ceramic-metal composite of TiO2 and Cu, the mixtures of which were found immiscible over large areas in the Gibbs’ triangle of ' Cu-O-Ti.
Mutually immiscible liquid phases are formed from water (aqueous phase), hydrophobic organic solvents, perfluorocarbons (fluorous phase), silicones, several different metals, and also from molten phosphorus. Not all organic solvents are completely miscible, e.g. a mixture of ethylene glycol and toluene may separate into two distinct organic phases. Phases do not need to macroscopically separate spontaneously.
Sometimes, the same equipment is used to achieve the co-current mass and heat transfer between two immiscible liquids.Satoru Asai, Junichi Hatanaka , Toshiya Kimura , Hidekazu Yoshizawa, Mass transfer in wetted-wall column with cocurrent laminar liquid-liquid flow in Industrial & Engineering Chemistry Research, vol. 26, n. 3, ACS Publications, marzo 1987, pp. 483–488. DOI:10.1021/ie00063a014.
The Australian National University (ANU) Physics Department, along with the author of the software, has used it for (amongst other things) the analysis of immiscible flow in massive 3D systems. Further uses were presented at the APAC '07. APAC07 conference & exhibition Among other software, Drishti uses Qt for the GUI widgets and OpenGL Extension Wrangler Library (GLEW).
Diesel fuel is immiscible in water. The bright rainbow pattern is the result of thin-film interference. Miscibility is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous solution. The term is most often applied to liquids but also applies to solids and gases.
A mixture can separate into more than two liquid phases and the concept of phase separation extends to solids, i.e., solids can form solid solutions or crystallize into distinct crystal phases. Metal pairs that are mutually soluble can form alloys, whereas metal pairs that are mutually insoluble cannot. As many as eight immiscible liquid phases have been observed.
Unlike the latter approach, reactive compatibilization does not rely on diffusing pre- formed copolymers. Copolymers form at the interfaces of the two immiscible blends and do not need to be dispersed. In the traditional approach the system needs to be well mixed when adding the copolymers. Reactive compatibilization is also much more efficient than traditional compatibilization.
Diagram of an LC-MS system Liquid chromatography is a method of physical separation in which the components of a liquid mixture are distributed between two immiscible phases, i.e., stationary and mobile. The practice of LC can be divided into five categories, i.e., adsorption chromatography, partition chromatography, ion-exchange chromatography, size-exclusion chromatography, and affinity chromatography.
A. Two immiscible liquids, not yet emulsified. B. An emulsion of Phase II dispersed in Phase I. C. The unstable emulsion progressively separates. D. The surfactant (purple outline around particles) positions itself on the interfaces between Phase II and Phase I, stabilizing the emulsion. Due to differences in physical properties, oil does not readily mix with water.
For simplicity, each protein structure was considered as an immiscible mixture of two solvents, protein interior and protein exterior. The local environment around individual amino acid (termed as "micro-environment") was computed for both protein interior and protein exterior. The ratio gives the relative hydrophobicity scale for individual amino acids. Computation was trained on high resolution protein crystal structures.
In organic chemistry, quaternary ammonium salts are employed as phase transfer catalysts (PTCs). Such catalysts accelerate reactions between reagents dissolved in immiscible solvents. The highly reactive reagent dichlorocarbene is generated via PTC by reaction of chloroform and aqueous sodium hydroxide. Anion exchange resins, in the form of beads, contain quaternary ammonium ions bound to a polymer.
Matter in the plasma state has variable volume and shape, and contains neutral atoms as well as a significant number of ions and electrons, both of which can move around freely. The term phase is sometimes used as a synonym for state of matter, but a system can contain several immiscible phases of the same state of matter.
They are the blotchy alteration of a fine-grained igneous rock; the mingling of magma from two distinctly different sources; and the alteration and degradation of plagioclase spherulites. These analyses also found that their internal organization and geochemistry is incompatible with the hypothesis that they are quenched immiscible liquids, as has been suggested in the past by various authors.
Short Fiber Reinforced Blends are partial case of ternary composites, i.e. composites prepared of three ingredients. In particular they can be considered as a combination of an immiscible polymer blend and a short fiber reinforced composite. These blends have the potential to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical performance of continuous fiber reinforced composites.
A different approach was suggested by Prof. J. Aizenberg from Harvard University, who suggested to use Slippery Liquid-Infused Porous Surfaces (SLIPS), a porous material inspired by the carnivorous pitcher plant and filled with a lubricating liquid immiscible with both water and oil. SLIPS possess self-healing and self-lubricating properties as well as icephobicity and were successfully used for many purposes.
Oxidized contaminants float to the top of the melt and are skimmed off. Metallic silver and gold are removed and recovered economically by means of the Parkes process, in which zinc is added to lead. Zinc, which is immiscible in lead, dissolves the silver and gold. The zinc solution can be separated from the lead, and the silver and gold retrieved.
Sonicating graphite at the interface of two immiscible liquids, most notably heptane and water, produced macro-scale graphene films. The graphene sheets are adsorbed to the high energy interface between the heptane and the water, where they are kept from restacking. The graphene remained at the interface even when exposed to force in excess of 300,000 g. The solvents may then be evaporated.
An example of such pair is the miscible resin NORYL™, a mix of poly(phenylene oxide) and polystyrene. Immiscible blends will phase separate and form a dispersed phase, which may improve physical properties (figure 1). DuPont’s rubber toughened Nylon consists of small particles of poly(cis-isoprene) (natural rubber) in a Nylon matrix that toughen the material by arresting crack propagation.
Since these compounds are immiscible substrates, solid-liquid phase transfer catalysis (PTC) can be used, using quaternary ammonium bromide as a phase transfer catalyst. This is shown in the following reaction: :: 490x490px Besides these three examples, there are many more ways to synthesize cinnamyl acetate. The addition reaction of dinitrogen trioxide to cinnamyl acetate produces an intermediate in the synthesis of chloramphenicol.
Others work by chemically or physically removing or sequestering the impurity. For example, to purify ethanol beyond 95%, a drying agent (or desiccant, such as potassium carbonate) can be added to convert the soluble water into insoluble water of crystallization. Molecular sieves are often used for this purpose as well. Immiscible liquids, such as water and toluene, easily form azeotropes.
One of these advantages is a low vapor pressure, which allows for high amine compositions without appreciable losses through the absorber and regenerator. MDEA is also resistant to thermal and chemical degradation and is largely immiscible with hydrocarbons. Lastly, MDEA has a relatively low heat of reaction with hydrogen sulfide and carbon dioxide, which allows for lower reboiler duties, thus lower operating costs.
A typically experimental setup for interfacial polymerization. One phase is above the interface, and the other phase is below. Polymerization occurs where the two phases meet, at the interface. Interfacial polymerization is a type of step-growth polymerization in which polymerization occurs at the interface between two immiscible phases (generally two liquids), resulting in a polymer that is constrained to the interface.
Some solutes such as noble gases can be extracted from one phase to another without the need for a chemical reaction (see absorption). This is the simplest type of solvent extraction. When a solvent is extracted, two immiscible liquids are shaken together. The more polar solutes dissolve preferentially in the more polar solvent, and the less polar solutes in the less polar solvent.
This can be done by placing secondary electrodes in each phase and close to interface each phase has a reference electrode. One phase is attached to a potentiostatPotentiostats - Their Care and Feeding which is set to zero volts, while the other potentiostat is driven with a triangular wave. This experiment is known as a polarised Interface between Two Immiscible Electrolyte Solutions (ITIES) experiment.
Similarly, multiple transitions are often found in polymer blends. For instance, blends of polycarbonate and poly(acrylonitrile-butadiene- styrene) were studied with the intention of developing a polycarbonate-based material without polycarbonate's tendency towards brittle failure. Temperature-sweeping DMA of the blends showed two strong transitions coincident with the glass transition temperatures of PC and PABS, consistent with the finding that the two polymers were immiscible.
Block copolymers are interesting because they can "microphase separate" to form periodic nanostructures,[13][14][15] Microphase separation is a situation similar to that of oil and water. Oil and water are immiscible - they phase separate. Due to incompatibility between the blocks, block copolymers undergo a similar phase separation. Because the blocks are covalently bonded to each other, they cannot demix macroscopically as water and oil.
Macroemulsions can be divided into two main categories based on if they are a single emulsion or a double or multiple emulsion group. Both categories will be described using a typical oil (O) and water (W) immiscible fluid pairing. Single emulsions can be sub divided into two different types. For each single emulsion a single surfactant stabilizing layer exists as a buffer in between the two layers.
A lava lamp contains two immiscible liquids (a molten wax and a watery solution) which add movement due to convection. In addition to the top surface, surfaces also form between the liquids, requiring a tension breaker to recombine the wax droplets at the bottom. Liquids have a variety of uses, as lubricants, solvents, and coolants. In hydraulic systems, liquid is used to transmit power.
Immiscible layers of colored water (top) and much denser perfluoroheptane (bottom) in a beaker; a goldfish and crab cannot penetrate the boundary; quarters rest at the bottom. Chemical structure of Nafion, a fluoropolymer used in fuel cells and many other applications The carbon–fluorine bond is organic chemistry's strongest,. and gives stability to organofluorines. It is almost non-existent in nature, but is used in artificial compounds.
Aqueous samples, lysed cells, or homogenised tissue are mixed with equal volumes of a phenol:chloroform mixture. This mixture is then centrifuged. Because the phenol:chloroform mixture is immiscible with water, the centrifuge will cause two distinct phases to form: an upper aqueous phase, and a lower organic phase. The aqueous phase rises to the top because it is less dense than the organic phase containing the phenol:chloroform.
A heterogeneous mixture (e. g. liquid and solid) can be separated by mechanical separation processes like filtration or centrifugation. Homogeneous mixtures can be separated by molecular separation processes; these are either equilibrium-based or rate-controlled. Equilibrium- based processes are operating by the formation of two immiscible phases with different compositions at equilibrium, an example is distillation (in distillation the vapor has another composition than the liquid).
Block or graft copolymers are commonly used as compatibilizing agents. The copolymer used is made of the two components in the immiscible blend. The respective portions of the copolymer are able to interact with the two phases of the blend to make the phase morphology more stable. The increased stability is caused by reducing the size of the phase-separated particles in the blend.
The Parkes process is a pyrometallurgical industrial process for removing silver from lead during the production of bullion. It is an example of liquid–liquid extraction. The process takes advantage of two liquid-state properties of zinc. The first is that zinc is immiscible with lead, and the other is that silver is 3000 times more soluble in zinc than it is in lead.
The most common method of measuring amino acid hydrophobicity is partitioning between two immiscible liquid phases. Different organic solvents are most widely used to mimic the protein interior. However, organic solvents are slightly miscible with water and the characteristics of both phases change making it difficult to obtain pure hydrophobicity scale. Nozaki and Tanford proposed the first major hydrophobicity scale for nine amino acids.
Novel polymeric alloy is compounded for geosynthetic applications, such as high-modulus geocells or geogrids. In geocell applications strips are co-extruded in multi-layer strips. Outer layers are a blend of polyolefins while the core layer is formed from a high performance polymer. The blend is generally immiscible (an alloy), where the high performance polymer is dispersed in a matrix formed by the polyolefins.
In 1896, Beijerinck first noted an 'incompatibility' in solutions of agar, a water- soluble polymer, with soluble starch or gelatine. Upon mixing, they separated into two immiscible phases. Subsequent investigation led to the determination of many other aqueous biphasic systems, of which the polyethylene glycol (PEG) - dextran system is the most extensively studied. Other systems that form aqueous biphases are: PEG - sodium carbonate or PEG and phosphates, citrates or sulfates.
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir. This equation can be derived from the mass conservation equations of two-phase flow, under the assumptions listed below.
Macroemulsions are, by definition, not thermodynamically stable. This means that from the moment they are created, they are always reverting to their original, immiscible and separate state. The reason why Macroemulsions can exist however, is because they are kinetically stable rather than thermodynamically stable. This means that while they are continuously breaking down, it is done at such a slow pace that it is practically stable from a macroscopic perspective.
Experimental study of wettability and Pore Geometry Effects on Heavy Oil Recovery of Hydrocarbon Solvent Flooding, A. Dehghan, 2008. 94\. Modeling of Asphaltene precipitation and its effect on permeability reduction, Zargar Z., 2008. 95\. Simulation study of Thermally Assisted Gas Oil Gravity Drainage in one of Iranian Fractured Reservoirs, Y. Mahmoodi Razmaghan, 2009. 96\. The Role of Wettability in Immiscible Gas Assisted Gravity Drainage (GAGD) Process, A. Alipoor Tabrizi, 2009. 97\.
Two masking techniques are common to produce Janus particles, evaporative deposition and a technique where the nanoparticle is suspended at the interface of two phases. However, only the phase separation technique scales well to the nanoscale. The phase interface method involves trapping homogeneous nanoparticles at the interface of two immiscible phases. These methods typically involve the liquid–liquid and liquid–solid interfaces, but a gas–liquid interface method has been described.
The peroxide process, also called the Pechiney–Ugine–Kuhlmann process, was developed in the early 1970s by Produits Chimiques Ugine Kuhlmann.. .. Originally the process used acetone instead of methyl ethyl ketone. Methyl ethyl ketone is advantageous because the resulting ketazine is immiscible in the reaction mixture and can be separated by decantation... The world's largest hydrazine hydrate plant is in Lannemezan in France, producing 17,000 tonnes of hydrazine products per year..
Finally, slag can help to control the supply of refining media to the melt. These functions are achieved if the slag has a low melting temperature, low density and high viscosity which ensure a liquid slag that separates well from the melting metal. Slag should also maintain its correct composition so that it can collect more impurities and be immiscible in the melt.Moore J. J. Chemical Metallurgy Butterworth-Heinemann, Oxford.
The amount of glass allowed to pour onto the molten tin is controlled by a gate called a tweel. Tin is suitable for the float glass process because it has a high specific gravity, is cohesive, and is immiscible with molten glass. Tin, however, oxidises in a natural atmosphere to form tin dioxide (SnO2). Known in the production process as dross, the tin dioxide adheres to the glass.
The size reduction comes from the lower interfacial tension, due to accumulating block copolymers at the many interfaces between the two copolymers. This helps the immiscible blends break up into smaller particles in the melt phase. In turn, these phase separated particles will not be as inclined to consolidate and grow because the interfacial tension is now much lower. This stabilizes the polymer blend to a usable product.
This is ~10 pN for EtOH which still allows for the observation of even the weakest polar/nonpolar interactions (~20 pN). The choice of liquid is dependent on which interactions are of interest. When the solvent is immiscible with functional groups, larger than usual tip-surface bonding exists. Therefore, organic solvents are appropriate for studying van der Waals and hydrogen bonding while electrolytes are best for probing hydrophobic and electrostatic forces.
Solvent extraction. Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e.
Life Sustain 9-Billion uses a one step consolidated method to engineer biofuels, using microbial metabolism. Their technology allows the selection of carbon chain length, branching, saturation, and chemical functionality of each product. LS9 microbial catalysts carryout all chemical conversions in a single step fermentation and produce an immiscible product that is naturally secreted from the cell. Centrifugation or simple settling recovers the final product from the fermentation medium.
Perfluorobutanesulfonyl fluoride (nonafluorobutanesulfonyl fluoride, NfF) is a colorless, volatile liquid that is immiscible with water but soluble in common organic solvents. It is prepared by the electrochemical fluorination of sulfolane. NfF serves as an entry point to nonafluorobutanesulfonates (nonaflates), which are valuable as electrophiles in palladium catalyzed cross coupling reactions. As a perfluoroalkylsulfonylating agent, NfF offers the advantages of lower cost and greater stability over the more frequently used triflic anhydride.
Heterogeneous distillation means that during the distillation the liquid phase of the mixture is immiscible. In this case on the plates can be two liquid phases and the top vapour condensate splits in two liquid phases, which can be separated in a decanter. The simplest case of continuous heteroazeotropic distillation is the separation of a binary heterogeneous azeotropic mixture. In this case the system contains two columns and a decanter.
One chemical process has been demonstrated to pilot plant stage but not used for production. The French CHEMEX process exploited a very slight difference in the two isotopes' propensity to change valency in oxidation/reduction, using immiscible aqueous and organic phases. An ion-exchange process was developed by the Asahi Chemical Company in Japan that applies similar chemistry but effects separation on a proprietary resin ion-exchange column.
Methods such as immiscible gas injection, polymer flooding, and in situ combustion, better known as fireflooding, have all seen limited success in the Carabobo field. However, steam injection and microbial enhanced oil recovery (MEOR) have seen the most success. Microbial enhanced oil recovery, specifically, has received special attention. In 1999, Bognolo reported that biosurfactants not only reduced the viscosity of the Venezuelan heavy crude oils, but also increased their mobility in transport lines.
Butyraldehyde is produced almost exclusively by the hydroformylation of propylene: : CH3CH=CH2 \+ H2 \+ CO → CH3CH2CH2CHO Traditionally, hydroformylation was catalyzed by cobalt carbonyl and later rhodium complexes of triphenylphosphine. The dominant technology involves the use of rhodium catalysts derived from the water-soluble ligand tppts. An aqueous solution of the rhodium catalyst converts the propylene to the aldehyde, which forms a lighter immiscible phase. About 6 billion kilograms are produced annually by hydroformylation.
Industrial scale centrifuges are commonly used in manufacturing and waste processing to sediment suspended solids, or to separate immiscible liquids. An example is the cream separator found in dairies. Very high speed centrifuges and ultracentrifuges able to provide very high accelerations can separate fine particles down to the nano-scale, and molecules of different masses. Large centrifuges are used to simulate high gravity or acceleration environments (for example, high-G training for test pilots).
Nearly any pair of immiscible solutions can be used in countercurrent chromatography provided that the stationary phase can be successfully retained. Solvent costs are also generally lower than for high-performance liquid chromatography (HPLC). In comparison to column chromatography, flows and total solvent usage can in most countercurrent chromatography separations may be reduced by half and even up to a tenth. Also, the cost of purchasing and disposing of stationary phase media is eliminated.
An immiscible primary refrigerant evaporates to supersaturate the water and form small smooth crystals. With direct contact chilling, there is no physical boundary between the brine and the refrigerant, increasing the rate of heat transfer. However, the major disadvantage of this system is that a small amount of refrigerant stays in the brine, trapped in the crystals. This refrigerant is pumped with the slurry out of the generator and into the environment.
188 and 502 In some cases a mixture of otherwise immiscible liquids can be stabilized to form an emulsion, where one liquid is dispersed throughout the other as microscopic droplets. Usually this requires the presence of a surfactant in order to stabilize the droplets. A familiar example of an emulsion is mayonnaise, which consists of a mixture of water and oil that is stabilized by lecithin, a substance found in egg yolks.
Hydrogenation of ethene on a catalytic solid surface (1) Adsorption (2) Reaction (3) Desorption In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. Contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures (e.g. oil and water), or anywhere an interface is present.
When zinc is added to liquid lead that contains silver as a contaminant, the silver preferentially migrates into the zinc. Because the zinc is immiscible in the lead it remains in a separate layer and is easily removed. The zinc- silver solution is then heated until the zinc vaporizes, leaving nearly pure silver. If gold is present in the liquid lead, it can also be removed and isolated by the same process.
Magma mixing occurs when magmas of a different composition intrude a larger magma body. In some cases, the melts are immiscible and stay separated to form pillow like collections of denser mafic magmas on the bottom of less dense dense felsic magma chambers. The mafic pillow basalts will demonstrate a felsic matrix, suggesting magma mingling. Alternatively, the melts mix together and form a magma of a composition intermediate to the intrusive and intruded melt.
Kokfelt et al. completed an isotopic examination of the mantle plume under Iceland and found that erupted mantle lavas incorporated lower crustal components, confirming crustal recycling at the local level. Some carbonatite units, which are associated with immiscible volatile-rich magmas and the mantle indicator mineral diamond, have shown isotopic signals for organic carbon, which could only have been introduced by subducted organic material. The work done on carbonatites by Walter et al.
Two or three liquid phases that are electrically conductive and immiscible with one another are kept between electrodes, and upon addition of an electric field, charged particles travel from one phase to another separating anions and cations. A two-phase system brings anions into one phase and cations into the other. A three phase system extracts anions and cations into the two outer phases while leaving uncharged particles in the middle phase.Kuban; Slampova; Bocek.
The endocannabinoid transporters (eCBTs) are transport proteins for the endocannabinoids. Most neurotransmitters are water-soluble and require transmembrane proteins to transport them across the cell membrane. The endocannabinoids (anandamide, AEA, and 2-arachidonoylglycerol, 2-AG) on the other hand, are non-charged lipids that readily cross lipid membranes. However, since the endocannabinoids are water immiscible, protein transporters have been described that act as carriers to solubilize and transport the endocannabinoids through the aqueous cytoplasm.
See sigma bonds and pi bonds for LCAO descriptions of such bonding. Molecules that are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane. A polar covalent bond is a covalent bond with a significant ionic character. This means that the two shared electrons are closer to one of the atoms than the other, creating an imbalance of charge.
The settling time is a property of the solvent system and the sample matrix, both of which greatly influence stationary phase retention. To most process chemists, the term "countercurrent" implies two immiscible liquids moving in opposing directions, as typically occurs in large centrifugal extractor units. With the exception of dual flow (see below) CCC, most countercurrent chromatography modes of operation have a stationary phase and a mobile phase. Even in this situation, countercurrent flows occur within the instrument column.
The distribution constant (or partition ratio) (KD) is the equilibrium constant for the distribution of an analyte in two immiscible solvents.IUPAC Definition of partition ratio In chromatography, for a particular solvent, it is equal to the ratio of its molar concentration in the stationary phase to its molar concentration in the mobile phase, also approximating the ratio of the solubility of the solvent in each phase. The term is often confused with partition coefficient or distribution coefficient.
Similar cooling of helium-3, which has a lower boiling point, can achieve about in a helium-3 refrigerator. Equal mixtures of liquid and below separate into two immiscible phases due to their dissimilarity (they follow different quantum statistics: helium-4 atoms are bosons while helium-3 atoms are fermions). Dilution refrigerators use this immiscibility to achieve temperatures of a few millikelvins. It is possible to produce exotic helium isotopes, which rapidly decay into other substances.
A microemulsion is a stable isotropic dispersion of 2 immiscible liquids consisting of nanosized domains of one or both liquids in the other stabilized by an interfacial film of surface-active molecules. Microemulsions may be categorized further as oil-in-water (o/w) or water-in-oil (w/o), depending on the dispersed and continuous phases. Water-in-oil is more popular for synthesizing many kinds of nanoparticles. The water and oil are mixed with an amphiphillic surfactant.
Here, the immiscible liquids separate into layers (water below and solvent above it). When their combined volume reaches the level of the side-arm, the upper, less-dense layer will begin to flow back to the reactor while the water layer will remain in the trap. The trap will eventually reach capacity when the level of the water in it reaches the level of the side-arm. At this point, the trap must be drained into the receiving flask.
The original Six's thermometer design contains mercury, which has been banned for most uses in the European Union and some other parts of the world. In 2006, S.Brannan & Sons Ltd, a UK company, was granted a patent for a mercury-free version of Six's maximum–minimum thermometer: instead of mercury two immiscible liquids are used supporting an index. The thermometer operates in the same way as the mercury version. Electronic thermometers often include a maximum–minimum registering feature.
This was an important departure, both in theory and in practice, from adsorption chromatography. In liquid-liquid separation, a compound is distributed between two immiscible liquid phases under equilibrium conditions. Martin and Synge initially attempted to devise a method of performing a sequential liquid-liquid extraction with serially connected glass vessels that functioned as separatory funnels. The seminal article presenting their early studies described a rather complicated instrument that allowed partitioning of amino acids between water and chloroform phases.
In chemical separation terminology, the raffinate (from French raffiner, to refine) is a product which has had a component or components removed. The product having the removed materials is referred to as the extract. For example, in solvent extraction, the raffinate is the liquid stream which remains after solutes from the original liquid are removed through contact with an immiscible liquid. In metallurgy, raffinating refers to a process in which impurities are removed from liquid material.
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid (the dispersed phase) is dispersed in the other (the continuous phase).
The battery is based on immiscible organic catholyte and aqueous anolyte liquids, which exhibits high capacity retention and Coulombic efficiency during cycling. Primus Power has developed patented technology in its zinc bromine flow battery, a type of redox flow battery, to eliminate the membrane or separator, which reduces costs and failure rates. The Primus Power membraneless redox flow battery is working in installations in the United States and Asia with a second generation product announced 21 February 2017.
Ultra- and High Shear in-line or batch reactors allow production of biodiesel continuously, semi- continuously, and in batch-mode. This drastically reduces production time and increases production volume. The reaction takes place in the high-energetic shear zone of the Ultra- and High Shear mixer by reducing the droplet size of the immiscible liquids such as oil or fats and methanol. Therefore, the smaller the droplet size the larger the surface area the faster the catalyst can react.
A wax emulsion is a stable mixture of one or more waxes in water. Waxes and water are normally immiscible but can be brought together stably by the use of surfactants and a clever preparation process. Strictly speaking a wax emulsion should be called a wax dispersion since the wax is solid at room temperature. However, because the preparation takes place above the melting point of the wax, the actual process is called emulsification, hence the name wax emulsion.
Emulsions are mixtures of immiscible liquids. Water-in-oil emulsions of estradiol benzoate were evaluated as long- acting preparations for use by intramuscular injection in the 1940s and 1950s. Formulations of estradiol benzoate alone under the brand name Menformon- Emulsion and with progesterone under the brand name Di-Pro-Emulsion were previously marketed. A 10 mg dose of estradiol benzoate in emulsion by intramuscular injection is said to have a duration of about 2 to 3 weeks.
Countercurrent distribution (CCD, also spelled "counter current" distribution) is an analytical chemistry technique which was developed by Lyman C. Craig in the 1940s. Countercurrent distribution is a separation process that is founded on the principles of liquid–liquid extraction where a chemical compound is distributed (partitioned) between two immiscible liquid phases (oil and water for example) according to its relative solubility in the two phases. The simplest form of liquid-liquid extraction is the partitioning of a mixture of compounds between two immiscible liquid phases in a separatory funnel. This occurs in five steps: 1) preparation of the separatory funnel with the two phase solvent system, 2) introduction of the compound mixture into the separatory funnel, 3) vigorous shaking of the separatory funnel to mix the two layers and allow for mass transfer of compounds in and out of the phases, 4) The contents of the separatory funnel are allowed to settle back into two distinct phases and 5) the two phases are separated from each other by draining out the bottom phase.
Most low molecular weight chlorinated hydrocarbons such as chloroform, dichloromethane, dichloroethene, and trichloroethane are useful solvents. These solvents tend to be relatively non-polar; they are therefore immiscible with water and effective in cleaning applications such as degreasing and dry cleaning. Several billion kilograms of chlorinated methanes are produced annually, mainly by chlorination of methane: :CH4 \+ x Cl2 → CH4−xClx \+ x HCl The most important is dichloromethane, which is mainly used as a solvent. Chloromethane is a precursor to chlorosilanes and silicones.
Interfacial rheology is a branch of rheology that studies the flow of matter at the interface between a gas and a liquid or at the interface between two immiscible liquids. The measurement is done while having surfactants, nanoparticles or other surface active compounds present at the interface. Unlike in bulk rheology, the deformation of the bulk phase is not of interest in interfacial rheology and its effect is aimed to be minimized. Instead, the flow of the surface active compounds is of interest.
After the war Craven developed an idea he saw in a country pub in Dorset, England. The pub had a contraption made by a regular, Donald Dunnett, who had since departed, a one-off device which used two immiscible fluids as an egg timer. While it was rudimentary, Craven saw potential and set about perfecting it and turning into a lamp. He set up a laboratory in a small shed where he mixed ingredients in bottles of different shapes and sizes.
70 Sagan in 1987 Sagan also commented on Christianity and the Jefferson Bible, stating "My long-time view about Christianity is that it represents an amalgam of two seemingly immiscible parts, the religion of Jesus and the religion of Paul. Thomas Jefferson attempted to excise the Pauline parts of the New Testament. There wasn't much left when he was done, but it was an inspiring document." Regarding spirituality and its relationship with science, Sagan stated: > 'Spirit' comes from the Latin word 'to breathe'.
Magmas of different compositions can mix with one another. In rare cases, melts can separate into two immiscible melts of contrasting compositions. There are relatively few minerals that are important in the formation of common igneous rocks, because the magma from which the minerals crystallize is rich in only certain elements: silicon, oxygen, aluminium, sodium, potassium, calcium, iron, and magnesium. These are the elements that combine to form the silicate minerals, which account for over ninety percent of all igneous rocks.
The presence of an interface influences generally all thermodynamic parameters of a system. There are two models that are commonly used to demonstrate interfacial phenomena: the Gibbs ideal interface model and the Guggenheim model. In order to demonstrate the thermodynamics of an interfacial system using the Gibbs model, the system can be divided into three parts: two immiscible liquids with volumes and and an infinitesimally thin boundary layer known as the Gibbs dividing plane () separating these two volumes. Guggenheim Model.
While the outer membrane of E. coli contains porins that are permeable to phosphorylated compounds, the inner membrane does not. Then, an issue arises in how to transport such compounds across the inner membrane and into the cytosol. Surely, with the strong anionic charge of phosphate groups along with the remainder of the compound they are very much immiscible in the nonpolar region of the bilayer. The solution arises in cleaving the phosphate group away from the compound via ALP.
50) and liquid chemicals such as quicklime (dielectric constant approx. 90) can also be sensed. Dual-probe capacitance level sensors can also be used to sense the interface between two immiscible liquids with substantially different dielectric constants, providing a solid state alternative to the aforementioned magnetic float switch for the "oil-water interface" application. Since capacitance level sensors are electronic devices, phase modulation and the use of higher frequencies makes the sensor suitable for applications in which dielectric constants are similar.
The classification of the type of ore environment sets these apart from other magmatic Ni-Cu-PGE ore deposits, which share many of the same genetic (formational) controls. Kambalda-type ore deposits are distinctive in that the deposition of an immiscible Fe-Ni-Cu sulfide melt occurs within a lava flow channel upon the palaeosurface. This is distinct from other magmatic Ni-Cu-PGE deposits, where Fe-Ni-Cu sulfide melt accumulates within a subvolcanic feeder dike, sill, or magma chamber.
A decrease in total free energy was observed to be a result of the assembly of nanoparticles at an oil/water interface. When moving to the interface, particles reduce the unfavorable contact between the immiscible fluids and decrease the interfacial energy. The decrease in total free energy for microscopic particles is much larger than that of thermal energy, resulting in an effective confinement of large colloids to the interface. Nanoparticles are restricted to the interface by an energy reduction comparable to thermal energy.
Carbon dioxide (CO2) is particularly effective in reservoirs deeper than 2,000 ft., where CO2 will be in a supercritical state. In high pressure applications with lighter oils, CO2 is miscible with the oil, with resultant swelling of the oil, and reduction in viscosity, and possibly also with a reduction in the surface tension with the reservoir rock. In the case of low pressure reservoirs or heavy oils, CO2 will form an immiscible fluid, or will only partially mix with the oil.
The waste material enters the inlet chute and is softened into a sludge which is then steam heated. This mixture then enters a three- phase decanter centrifuge, also known as a tricanter centrifuge. A tricanter centrifuge operates on a similar principle to decanter centrifuges but instead separates three phases, consisting of a suspended solids phase and two immiscible liquids. Sedimentation of the suspended solids occurs as normal where they accumulate on the wall of the bowl and are conveyed out of the centrifuge.
Sulfide mineral cumulates in layered intrusions are an important source of nickel, copper, platinum group elements and cobalt. Deposits of a mixed massive or mixed sulfide-silicate 'matrix' of pentlandite, chalcopyrite, pyrrhotite and/or pyrite are formed, occasionally with cobaltite and platinum-tellurium sulfides. These deposits are formed by melt immiscibility between sulfide and silicate melts in a sulfur-saturated magma. They are not strictly a cumulate rock, as the sulfide is not precipitated as a solid mineral, but rather as immiscible sulfide liquid.
Professor Jürgen Moltmann found that the Buddhist scholar's presentation was profound and precise concerning a central topic of Christian theology. "Here reciprocal understanding is not only furthered, but Christianity and Buddhism in their immiscible difference are led into a common reality. In light of this common reality, perhaps a mutual transformation does not yet begin, but certainly a reciprocal liking and opening for each other."Jürgen Moltmann, "God is Unselfish Love" at 116-124, 116, in The Emptying God (Maryknoll: Orbis 1990), edited by Cobb and Ives.
A wide variety of laboratory-scale centrifuges are used in chemistry, biology, biochemistry and clinical medicine for isolating and separating suspensions and immiscible liquids. They vary widely in speed, capacity, temperature control, and other characteristics. Laboratory centrifuges often can accept a range of different fixed-angle and swinging bucket rotors able to carry different numbers of centrifuge tubes and rated for specific maximum speeds. Controls vary from simple electrical timers to programmable models able to control acceleration and deceleration rates, running speeds, and temperature regimes.
Histologic sample being embedded in paraffin wax (tissue is held at the bottom of a metal mold, and more molten paraffin is poured over it to fill it). For light microscopy, paraffin wax is the most frequently used embedding material. Paraffin is immiscible with water, the main constituent of biological tissue, so it must first be removed in a series of dehydration steps. Samples are transferred through a series of progressively more concentrated ethanol baths, up to 100% ethanol to remove remaining traces of water.
Experimental and Modeling simulation study of asphaltene precipitation due to CO2 injection in one of Iranian oil reservoir, T. Pak 2010. 113\. Experimental and simulation studies on applicability of surfactant in foam assisted water alternating gas injection in one of Iranian oil reservoir, A. Gandomkar, 2010. 114\. Experimental and simulation studies on applicability of immiscible water alternating CO2 injection in secondary and tertiary oil recovery in one of Iranian oil reservoir, M. Motealleh, 2010. 115\. PVT modeling of compositional grading in petroleum reservoirs, M.H. Nikpoor, 2010. 116\.
Under these conditions, it is expected that only the outer surface of aggregates, in contact with the organic phase can be modified with OTS, and indeed almost all of the particles were located at the phase boundary when added to an immiscible water–organic solvent (W/O) mixture. The partly modified sample is denoted w/o-Ti-NaY. Fully modified Ti-NaY (o-Ti-NaY), prepared without the addition of water in the above second step, is readily suspended in an organic solvent as expected.
The Middeck Glove Box (MGBX) is a facility designed for materials science and biological science experiment handling. It consists of two primary systems; an Interface Frame (IF) and a Glovebox (GB). The MGBX facility (with associated electronics) provides an enclosed working area for experiment manipulation and observation on the shuttle mid-deck. The MGBX experiments on this flight are: WCI – The objective of the Wetting Characteristics of Immiscibles was to investigate the influence of alloy/ampoule wetting characteristics on the segregation of immiscible liquids during microgravity processing.
They observed that the micron-sized colloids generated a resistant film at the interface between the two immiscible phases, inhibiting the coalescence of the emulsion drops. These Pickering emulsions are formed from the self-assembly of colloidal particles in two-part liquid systems, such as oil-water systems. The desorption energy, which is directly related to the stability of emulsions depends on the particle size, particles interacting with each other, and particles interacting with oil and water molecules. Self-assembly of solid nanoparticles at oil-water interface.
A. Frumkin, Об явлениях смачивания и прилипания пузырьков, I (On the phenomena of wetting and adhesion of the bubbles, I). Zhurnal Fizicheskoi Khimii (J Phys Chem USSR), 12: 337-345 (1938). The term electrowetting was first introduced in 1981 by G. Beni and S. Hackwood to describe an effect proposed for designing a new type of display device for which they received a patent. The use of a "fluid transistor" in microfluidic circuits for manipulating chemical and biological fluids was first investigated by J. Brown in 1980 and later funded in 1984–1988 under NSF Grants 8760730 & 8822197, employing insulating dielectric and hydrophobic layer(s) (EWOD), immiscible fluids, DC or RF power; and mass arrays of miniature interleaved (saw tooth) electrodes with large or matching Indium tin oxide (ITO) electrodes to digitally relocate nano droplets in linear, circular and directed paths, pump or mix fluids, fill reservoirs and control fluid flow electronically or optically. Later, in collaboration with J. Silver at the NIH, EWOD-based electrowetting was disclosed for single and immiscible fluids to move, separate, hold and seal arrays of digital PCR sub- samples.
The operating principle of CCC equipment requires a column consisting of a tube coiled around a bobbin. The bobbin is rotated in a double-axis gyratory motion (a cardioid), which causes a variable g-force to act on the column during each rotation. This motion causes the column to see one partitioning step per revolution and components of the sample separate in the column due to their partitioning coefficient between the two immiscible liquid phases. "High-performance" countercurrent chromatography (HPCCC) works in much the same way as HSCCC.
Pristane is a natural saturated terpenoid alkane obtained primarily from shark liver oil, from which its name is derived (Latin pristis, "shark"). It is also found in the stomach oil of birds in the order Procellariiformes and in mineral oil and some foods. Pristane and phytane are used in the fields of geology and environmental science as biomarkers to characterize origins and evolution of petroleum hydrocarbons and coal. It is a transparent oily liquid that is immiscible with water, but soluble in diethyl ether, benzene, chloroform and carbon tetrachloride.
In chemical separation processes, a mass separating agent (MSA) is a chemical species that is added to ensure that the intended separation process takes place. It is analogous to an energy separating agent, which aids separations processes via addition of energy. An MSA may be partially immiscible with one or more mixture components and frequently is the constituent of highest concentration in the added phase. Alternatively, the MSA may be miscible with a liquid feed mixture, but may selectively alter partitioning of species between liquid and vapor phases.
In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the distribution coefficient refers to the concentration ratio of all species of the compound (ionized plus un-ionized). In the chemical and pharmaceutical sciences, both phases usually are solvents.
The diffusion model does not take into account the miscibility of substrate and layer, so for immiscible or low-miscibility systems it will overestimate the degree of mixing, while for highly miscible systems the model will underestimate the degree of mixing. Thermodynamic effects are also not considered in this basic interdiffusion equation, but can be modeled by equations that consider the enthalpies of mixing and the molar fractions of the target species, and one can thereby develop a thermodynamic effective diffusion coefficient reflecting temperature effects (which become pronounced at high temperatures).
Two funnels: A - Cone, or Pear-shaped, B - cylindrical. Pear-shaped separatory funnel A separatory funnel, also known as a separation funnel, separating funnel, or colloquially sep funnel, is a piece of laboratory glassware used in liquid-liquid extractions to separate (partition) the components of a mixture into two immiscible solvent phases of different densities. Typically, one of the phases will be aqueous, and the other a lipophilic organic solvent such as ether, MTBE, dichloromethane, chloroform, or ethyl acetate. All of these solvents form a clear delineation between the two liquids.
The separatory funnel relies on the concept of "like dissolves like", which describes the ability of polar solvents to dissolve polar solutes and non-polar solvents to dissolve non-polar solutes. When the separatory funnel is agitated, each solute migrates to the solvent (also referred to as "phase") in which it is more soluble. The solvents normally do not form a unified solution together because they are immiscible. When the funnel is kept stationary after agitation, the liquids form distinct physical layers - lower density liquids will stay above higher density liquids.
Rate- controlled processes are based on different transport rates of compounds through a medium, examples are adsorption, ion exchange or crystallization. Separation of a mixture into two phases can be done by an energy separating agent, a mass separating agent, a barrier or external fields. Energy- separating agents are used for creating a second phase (immiscible of different composition than the first phase), they are the most common techniques used in industry. For example, leads the addition of heat (the separating agent) to a liquid (first phase) to the formation of vapor (second phase).
This behavior allows considering amphiphilic Janus nanoparticles as analogues of molecular surfactants for the stabilization of emulsions. In 2005, spherical silica particles with amphiphilic properties were prepared by partial modification of the external surface with an alkylsilane agent. These particles form spherical assemblies encapsulating water-immiscible organic compounds in aqueous media by facing their hydrophobic alkylsilylated side to the inner organic phase and their hydrophilic side to the outer aqueous phase, thus stabilizing oil droplets in water. In 2009, hydrophilic surface of silica particles was made partially hydrophobic by adsorbing cetyltrimethylammonium bromide.
In electrochemistry, ITIES (interface between two immiscible electrolyte solutions) is an electrochemical interface that is either polarisable or polarised. An ITIES is polarisable if one can change the Galvani potential difference, or in other words the difference of inner potentials between the two adjacent phases, without noticeably changing the chemical composition of the respective phases (i.e. without noticeable electrochemical reactions taking place at the interface). An ITIES system is polarised if the distribution of the different charges and redox species between the two phases determines the Galvani potential difference.
As the metals cool and solidify the copper and the silver-containing lead separate as they are immiscible with each other. The ratio of lead to copper in these cakes is an important factor for the process to work efficiently. Agricola recommended 3 parts copper to 8–12 parts lead. The copper must be assayed to accurately determine how much silver it contains; for copper rich in silver the top end of this ratio was used to make sure the maximum amount of silver possible would end up within the lead.
Miscibility gap alloys rely on the phase change of a metallic material (see: latent heat) to store thermal energy. Rather than pumping the liquid metal between tanks as in a molten-salt system, the metal is encapsulated in another metallic material that it cannot alloy with (immiscible). Depending on the two materials selected (the phase changing material and the encapsulating material) storage densities can be between 0.2 and 2 MJ/L. A working fluid, typically water or steam, is used to transfer the heat into and out of the system.
In the past, the natural gas which was recovered in the course of recovering petroleum could not be profitably sold, and was simply burned at the oil field in a process known as flaring. Flaring is now illegal in many countries. Additionally, higher demand in the last 20–30 years has made production of gas associated with oil economically viable. As a further option, the gas is now sometimes re-injected into the formation for enhanced oil recovery by pressure maintenance as well as miscible or immiscible flooding.
The wettability conditions in a porous media containing two or more immiscible fluid phases determine the microscopic fluid distribution in the pore network. Nuclear magnetic resonance measurements are sensitive to wettability because of the strong effect that the solid surface has on promoting magnetic relaxation of the saturating fluid. The idea of using NMR as a tool to measure wettability was presented by Brown and Fatt in 1956. The magnitude of this effect depends upon the wettability characteristics of the solid with respect to the liquid in contact with the surface.
Three-dimensional droplet actuation has been made possible by implementing a closed system; this system contains a µL sized droplet in immiscible fluid medium. The droplet and medium are then sandwiched between two electromagnetic plates, creating an EM field between the two plates. The purpose of this method is to transfer the droplet from a lower planar surface to an upper parallel planar surface and back down via electrostatic forces. The physics behind such particle actuation and perpendicular movement can be understood from early works of N. N. Lebedev and I. P. Skal’skaya.
Reductive opening of the ketal under modified Hunter conditions in dichloromethane yields an inseparable mixture of isomeric mesylates. The corresponding epoxide is formed under basic conditions with potassium bicarbonate. Using the inexpensive Lewis acid magnesium bromide diethyl etherate (commonly prepared fresh by the addition of magnesium turnings to 1,2-dibromoethane in benzene:diethyl ether), the epoxide is opened with allyl amine to yield the corresponding 1,2-amino alcohol. The water-immiscible solvents methyl tert-butyl ether and acetonitrile are used to simplify the workup procedure, which involved stirring with 1 M aqueous ammonium sulfate.
A static mixer is a precision engineered device for the continuous mixing of fluid materials, without moving components. Normally the fluids to be mixed are liquid, but static mixers can also be used to mix gas streams, disperse gas into liquid or blend immiscible liquids. The energy needed for mixing comes from a loss in pressure as fluids flow through the static mixer. One design of static mixer is the plate-type mixer and another common device type consists of mixer elements contained in a cylindrical (tube) or squared housing.
Schematic representation of solvent extraction and countercurrent stagewise process The industrial separation processes will be implemented stepwise by annular centrifugal contactors, developed for the first time at Argonne National Laboratory in the 1970s. The countercurrent process consists of the aqueous and organic phases moving continuously in opposite directions stage by stage. The two immiscible liquids enter each contactor unit, first contacted in the annular region between the housing and the spinning rotor and then centrifuged in the inner part of the unit. Two main ways are currently followed within the partitioning strategy: the heterogeneous and homogeneous recycling.
Ikeda, H. Nur, T. Sawadaishi, K. Ijiro, M. Shimomura, B. Ohtani, Direct observation of bimodal amphiphilic surface structures of zeolite particles for a novel liquid-liquid phase boundary catalysis, Langmuir, 2001, (17) 7976 – 7979. AbstractH. Nur, S. Ikeda and B. Ohtani, Phase-boundary catalysts for acid- catalyzed reactions: the role of bimodal amphiphilic structure and location of active sites, Journal of Brazilian Chemical Society, 2004, (15) 719–724 – 2236. PaperH. Nur, S. Ikeda, and B. Ohtani, Amphiphilic NaY zeolite particles loaded with niobic acid: Materials with applications for catalysis in immiscible liquid-liquid system, Reaction Kinetics and Catalysis Letters, 2004, (17) 255 – 261.
Immiscible layers of colored water (top) and much denser perfluoroheptane (bottom) in a beaker; a goldfish and crab cannot penetrate the boundary; quarters rest at the bottom. Fluorocarbons, sometimes referred to as perfluorocarbons or PFCs, are, strictly speaking, organofluorine compounds with the formula CxFy. I.e., they contain only carbon and fluorine. However, the terminology is not strictly followed in that some may use the term for species containing an element other than C or F. Compounds with the prefix perfluoro- are hydrocarbons, including those with heteroatoms, wherein all C-H bonds have been replaced by C-F bonds.
Schematic of Periodic Droplet Deformation Between Prolate and Oblate Shapes Due to the Presence of an Oscillating Electric Field Electrohydrodynamic droplet deformation is a phenomenon that occurs when liquid droplets suspended in a second immiscible liquid are exposed to an oscillating electric field. Under these conditions, the droplet will periodically deform between prolate and oblate ellipsoidal shapes. The characteristic frequency and magnitude of the deformation is determined by a balance of electrodynamic, hydrodynamic, and capillary stresses acting on the droplet interface. This phenomenon has been studied extensively both mathematically and experimentally because of the complex fluid dynamics that occur.
In 2008, spherical amphiphilic Janus nanoparticles, having one polystyrene and one poly(methyl methacrylate) side, were shown to be effective as compatibilizing agents of multigram scale compatibilization of two immiscible polymer blends, polystyrene and poly(methyl methacrylate). The Janus nanoparticles oriented themselves at the interface of the two polymer phases, even under high temperature and shear conditions, allowing the formation of much smaller domains of poly(methyl methacrylate) in a polystyrene phase. The performance of the Janus nanoparticles as compatibilizing agents was significantly superior to other state-of-the-art compatibilizers, such as linear block copolymers.
Milk is a commonly cited example of an emulsion, a specific type of dispersion of one liquid into another liquid where to two liquids are immiscible. The fat molecules suspended in milk provide a mode of delivery of important fat-soluble vitamins and nutrients from the mother to newborn. The mechanical, thermal, or enzymatic treatment of milk manipulates the integrity of these fat globules and results in a wide variety of dairy products. Oxide dispersion-strengthened alloy (ODS) is an example of oxide particle dispersion into a metal medium, which improves the high temperature tolerance of the material.
Collision cascades in the vicinity of a surface often lead to sputtering, both in the linear spike and heat spike regimes. Heat spikes near surfaces also frequently lead to crater formation. This cratering is caused by liquid flow of atoms, but if the projectile size above roughly 100,000 atoms, the crater production mechanism switches to the same mechanism as that of macroscopic craters produced by bullets or asteroids. The fact that many atoms are displaced by a cascade means that ions can be used to deliberately mix materials, even for materials that are normally thermodynamically immiscible.
The station was equipped with a materials processing facility that included a multi-purpose electric furnace, a crystal growth chamber, and an electron beam gun. Among the experiments to be performed was research on molten metal processing; photographing the behavior of ignited materials in zero-gravity; crystal growth; processing of immiscible alloys; brazing of stainless steel tubes, electron beam welding, and the formation of spheres from molten metal. The crew spent a total of 32 man-hours on materials science and space manufacturing investigation during the mission. The Space Studies Institute began hosting a bi-annual Space Manufacturing Conference in 1977.
In another standard performance segment, he placed eight or more lit cigarettes in his mouth but instead of inhaling, he swallowed the smoke and, after a significant time had passed, issued it forth in a steady stream like an erupting volcano. Ali's longstanding finale was the swallowing of copious amounts of water again, but this time followed by a pint of kerosene. A prop was then produced, typically a model castle or house made of metal set on a table, within which a small flame burned. Lighter than water and immiscible with it, the kerosene floated above the liquid in Ali's gut, allowing him to disgorge it first.
An example of a HPCCC system Counter current chromatography (CCC) is a type of liquid- liquid chromatography, where both the stationary and mobile phases are liquids. The operating principle of CCC instrument requires a column consisting of an open tube coiled around a bobbin. The bobbin is rotated in a double-axis gyratory motion (a cardioid), which causes a variable gravity (G) field to act on the column during each rotation. This motion causes the column to see one partitioning step per revolution and components of the sample separate in the column due to their partitioning coefficient between the two immiscible liquid phases used.
Mixing of liquids A and B and subsequent phase separation When mixed, oil and vinegar will phase-separate A phase diagram for two isotopes of helium, showing at bottom a range of temperatures and ratios at which they will phase- separate. Phase separation is the creation of two distinct phases from a single homogeneous mixture. The most common type of phase separation is between two immiscible liquids such as oil and water. Colloids are formed by phase separation, though not all phase separation forms colloids - for example oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension.
A miniemulsion (also known as nanoemulsion) is a special case of emulsion. A miniemulsion is obtained by shearing a mixture comprising two immiscible liquid phases (for example, oil and water), one or more surfactants and, possibly, one or more co-surfactants (typical examples are hexadecane or cetyl alcohol). There are two general types of methods for preparing miniemulsions: high-energy methods and low-energy methods. For the high-energy methods, the shearing proceeds usually via exposure to high power ultrasoundPeshkovsky A, Peshkovsky S, "Acoustic Cavitation Theory and Equipment Design Principles for Industrial Applications of High-Intensity Ultrasound", Physics Research and Technology, Nova Science Pub. Inc.
As in other egg emulsion sauces, like mayonnaise and Béarnaise, the egg does not coagulate as in a custard; rather, the lecithin in the eggs serves as an emulsifier, allowing the mixture of the normally immiscible butter and lemon juice to form a stable emulsion. To make hollandaise sauce, beaten egg yolks are combined with butter, lemon juice, salt, and water, and heated gently while being mixed. Some cooks use a double boiler to control the temperature. Some recipes add melted butter to warmed yolks; others call for unmelted butter and the yolks to be heated together; still others combine warm butter and eggs in a blender or food processor.
Particle-laden flows refers to a class of two-phase fluid flow, in which one of the phases is continuously connected (referred to as the continuous or carrier phase) and the other phase is made up of small, immiscible, and typically dilute particles (referred to as the dispersed or particle phase). Fine aerosol particles in air is an example of a particle-laden flow; the aerosols are the dispersed phase, and the air is the carrier phase. The modeling of two-phase flows has a tremendous variety of engineering and scientific applications: pollution dispersion in the atmosphere, fluidization in combustion processes, aerosol deposition in spray medication, along with many others.
This will produce an emulsion in which globules of liquid NiFe are dispersed in a magma of liquid silicates, the two being immiscible. Because the NiFe globules are denser than the silicates, they will sink under the influence of gravity to the centre of the planetary body—in effect, the globules of metal will "rain out" from the emulsion to the centre, forming a core. According to the rain- out model, core formation was a relatively rapid process, taking a few dozen millennia to reach completion. This occurred at the end of a lengthy process in which the planets were assembled from colliding planetary embryos.
In-situ aggregate formation: Many micro-composites form their aggregate particles by a process of self-assembly. For example, in high impact polystyrene, two immiscible phases of polymer (including brittle polystyrene and rubbery polybutadiene) are mixed together. Special molecules (graft copolymers) include separate portions which are soluble in each phase, and so are only stable at the interface between them, in the manner of a detergent. Since the number of this type of molecule determines the interfacial area, and since spheres naturally form to minimize surface tension, synthetic chemists can control the size of polybutadiene droplets in the molten mix, which harden to form rubbery aggregates in a hard matrix.
Or it may be run with the upper phase stationary and the lower phase being introduced from the top of the column. In both cases, the work of gravity is allowed influence the two immiscible liquids of different densities to form the signature droplets that rise or descend through the column. The mobile phase is pumped at a rate that will allow droplets to form that maximize the mass transfer of a compound between the upper and lower phases. Compounds that are more soluble in the upper phase will travel quickly through the column, while compounds that are more soluble in the stationary phase will linger.
As such purification steps can be carried out where an aqueous solution of an amine is neutralized with a base such as sodium hydroxide, then shaken in a separatory funnel with a nonpolar solvent that is immiscible with water. The organic phase is then drained off. Subsequent processing can recover the amine by techniques such as recrystallization, evaporation or distillation; subsequent extraction back to a polar phase can be performed by adding HCl and shaking again in a separatory funnel (at which point the ammonium ion could be recovered by adding an insoluble counterion), or in either phase, reactions could be performed as part of a chemical synthesis.
A high-shear mixer disperses, or transports, one phase or ingredient (liquid, solid, gas) into a main continuous phase (liquid), with which it would normally be immiscible. A rotor or impeller, together with a stationary component known as a stator, or an array of rotors and stators, is used either in a tank containing the solution to be mixed, or in a pipe through which the solution passes, to create shear. A high-shear mixer can be used to create emulsions, suspensions, lyosols (gas dispersed in liquid), and granular products. It is used in the adhesives, chemical, cosmetic, food, pharmaceutical, and plastics industries for emulsification, homogenization, particle size reduction, and dispersion.
The Bunsen reaction is a chemical reaction that describes water, sulfur dioxide, and iodine reacting to form sulfuric acid and hydrogen iodide: : 2H2O + SO2 \+ I2 → H2SO4 \+ 2HI This reaction is the first step in the sulfur- iodine cycle to produce hydrogen. The products separate into two aqueous layers, with the sulfuric acid floating on top, and a mixture of hydrogen iodide and unreacted iodine on the bottom. While the two layers are generally considered immiscible, small amounts of sulfuric acid may still remain in the hydrogen iodide layer and vice versa. This can lead to unwanted side reactions, one of which precipitates out sulfur, a potential obstruction to the reaction vessel.
The use of an IPN approach imposes compatibility (and thus macroscale homogeneity) on otherwise immiscible blends, allowing for a blending of mechanical properties. For example, silicone-polyurethane IPNs show increased tear and flexural strength over base silicone networks, while preserving the high elastic recovery of the silicone network at high strains. Increased stiffness can also be achieved by pre-straining polymer networks and then sequentially forming a secondary network within the strained material. This takes advantage of the anisotropic strain hardening of the original network (chain alignment from stretching of the polymer chains) and provides a mechanism whereby the two networks transfer stress to one another due to the imposed strain on the pre-strained network.
High frame rate video showing microbubble pinch-off formation in a flow-focusing microfluidic device Droplet-based microfluidics is a subcategory of microfluidics in contrast with continuous microfluidics; droplet-based microfluidics manipulates discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets allow for handling miniature volumes (μl to fl) of fluids conveniently, provide better mixing, encapsulation, sorting, and sensing, and suit high throughput experiments. Exploiting the benefits of droplet-based microfluidics efficiently requires a deep understanding of droplet generation to perform various logical operations such as droplet motion, droplet sorting, droplet merging, and droplet breakup.
Stratigraphy is also a challenge to production, as the pinch out of the Miocene Ofacina formation is characterized by shale barriers caused by the juxtaposition of different mudstone and sandstone facies. Thus, many reservoirs in the field are less than 50 meters thick, which is deemed unrecoverable. Enhanced oil recovery methods have been implemented in the Carabobo oil field to improve the low recovery factors. Along with microbial enhanced oil recovery, which involves using microorganisms as biosurfactants to reduce the viscosities of the extra heavy crudes, immiscible gas injection, polymer flooding, and in situ combustion, better known as fireflooding, have all been used to improve the recovery of oil in the field.
In organic compounds, the weight percent of hydrocarbon chain often determines the compound's miscibility with water. For example, among the alcohols, ethanol has two carbon atoms and is miscible with water, whereas 1-butanol with four carbons is not. Octanol, with eight carbons, is practically insoluble in water, and its immiscibility leads it to be used as a standard for partition equilibria. The straight-chain carboxylic acids up to butanoic acid (with four carbon atoms) are miscible with water, pentanoic acid (with five carbons) is partly soluble, and hexanoic acid (with six) is practically insoluble, as are longer fatty acids and other lipids; the very long carbon chains of lipids cause them almost always to be immiscible with water.
The glass of the jar is another separate phase. (See ) The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter.
In addition to being hard, diamonds have the advantage of being transparent to a wide range of the electromagnetic spectrum from infrared to gamma rays, with the exception of the far ultraviolet and soft X-rays. This makes the DAC a perfect device for spectroscopic experiments and for crystallographic studies using hard X-rays. A variant of the diamond anvil, the hydrothermal diamond anvil cell (HDAC) is used in experimental petrology/geochemistry for the study of aqueous fluids, silicate melts, immiscible liquids, mineral solubility and aqueous fluid speciation at geologic pressures and temperatures. The HDAC is sometimes used to examine aqueous complexes in solution using the synchrotron light source techniques XANES and EXAFS.
And in contrast to continuous-flow microfluidics, digital microfluidics works much the same way as traditional bench-top protocols, only with much smaller volumes and much higher automation. Thus a wide range of established chemical procedures and protocols can be seamlessly transferred to a nanoliter droplet format. Electrowetting, dielectrophoresis, and immiscible-fluid flows are the three most commonly used principles, which have been used to generate and manipulate microdroplets in a digital microfluidic device. A digital microfluidic (DMF) device set-up depends on the substrates used, the electrodes, the configuration of those electrodes, the use of a dielectric material, the thickness of that dielectric material, the hydrophobic layers, and the applied voltage.
ISBN: 0-12-5250501-0, 2012 which occurs at the onset of micro-Brownian segmental motion, identifiable by dynamic mechanical spectra. For an immiscible TPU, the loss modulus spectrum typically shows double peaks, each of which is assigned to the Tg of one component. If the two components are miscible, the TPU will be characterized by a single broad peak whose position lie between that of the two original Tg peaks of the pure components. The polarity of the hard pieces creates a strong attraction between them, which causes a high degree of aggregation and order in this phase, forming crystalline or pseudo crystalline areas located in a soft and flexible matrix.
In: The Interface Structure and ElectrochemicaL Processes at the Boundary Between Two Immiscible Liquids. Vladimir E. Kazarinov (edt.), Springer, Berlin, 3-10Petr Vanýsek (1985) Electrochemistry on Liquid/Liquid Interfaces. Springer, BerlinFritz Scholz (2006) Recent Advances in the Electrochemistry of Ion Transfer Processes at Liquid-Liquid Interfaces, Annual Reports on the Progress of Chemistry, Section C 102: 43-70 which now constitutes a research field of its own. The determination of the free energies of ion transfer between aqueous and organic solutions is of great importance for biology, physiology, pharmacy, and for liquid-liquid extraction in chemistry. Riesenfeld, together with Nernst, also developed a highly sensitive torsion displacement balance which is now known as ‘Nernst balance’.
Inside, one or more focused fluids are injected through a capillary feed tube whose extremity opens up in front of a small orifice, linking the pressure chamber with the exterior ambient. The focusing fluid stream moulds the fluid meniscus into a cusp giving rise to a steady micro or nano-jet exiting the chamber through the orifice; the jet size is much smaller than the exit orifice, thus precluding any contact (which may lead to unwanted deposition or reaction). Capillary instability breaks up the steady jet into homogeneous droplets or bubbles. The feed tube may be composed of two or more concentric needles and different immiscible liquids or gases to be injected, leading to compound drops.
The hydrophobic interaction is mostly an entropic effect originating from the disruption of the highly dynamic hydrogen bonds between molecules of liquid water by the nonpolar solute forming a clathrate-like structure around the non-polar molecules. This structure formed is more highly ordered than free water molecules due to the water molecules arranging themselves to interact as much as possible with themselves, and thus results in a higher entropic state which causes non-polar molecules to clump together to reduce the surface area exposed to water and decrease the entropy of the system. Thus, the two immiscible phases (hydrophilic vs. hydrophobic) will change so that their corresponding interfacial area will be minimal.
The above form for Darcy's law is sometimes also called Darcy's extended law, formulated for horizontal, one-dimensional, immiscible multiphase flow in homogeneous and isotropic porous media. The interactions between the fluids are neglected, so this model assumes that the solid porous media and the other fluids form a new porous matrix through which a phase can flow, implying that the fluid-fluid interfaces remain static in steady-state flow, which is not true, but this approximation has proven useful anyway. Each of the phase saturations must be larger than the irreducible saturation, and each phase is assumed continuous within the porous medium. Based on data from special core analysis laboratory (SCAL) experiments, simplified models of relative permeability as a function of saturation (e.g.
Sara Zahedi (born 1981 in Tehran) is an Iranian-Swedish mathematician who works in computational fluid dynamics and holds an associate professorship in numerical analysis at the Royal Institute of Technology (KTH) in Sweden. She is one of ten winners and the only female winner of the European Mathematical Society Prize for 2016 "for her outstanding research regarding the development and analysis of numerical algorithms for partial differential equations with a focus on applications to problems with dynamically changing geometry". The topic of Zahedi's EMS Prize lecture was her recent research on the CutFEM method of solving fluid dynamics problems with changing boundary geometry, such as arise when simulating the dynamics of systems of two immiscible liquids.Prize laureates, 7th Eur.
In a batch high-shear mixer, the components to be mixed (whether immiscible liquids or powder in liquid) are fed from the top into a mixing tank containing the mixer on a rotating shaft at the bottom of the tank. A batch high-shear mixer can process a given volume of material approximately twice as fast as an inline rotor–stator mixer of the same power rating; such mixers continue to be used where faster processing by volume is the major requirement, and space is not limited. When mixing sticky solutions, some of the product may be left in the tank, necessitating cleaning. However, there are designs of batch high-shear mixers that clean the tank as part of the operating run.
A high-performance countercurrent chromatography system Countercurrent chromatography (CCC, also counter-current chromatography) is a form of liquid–liquid chromatography that uses a liquid stationary phase that is held in place by centrifugal force and is used to separate, identify, and quantify the chemical components of a mixture. In its broadest sense, countercurrent chromatography encompasses a collection of related liquid chromatography techniques that employ two immiscible liquid phases without a solid support. The two liquid phases come in contact with each other as at least one phase is pumped through a column, a hollow tube or a series of chambers connected with channels, which contains both phases. The resulting dynamic mixing and settling action allows the components to be separated by their respective solubilities in the two phases.
Liquid-liquid extractions in the laboratory usually make use of a separatory funnel, where two immiscible phases are combined to separate a solute from one phase into the other, according to the relative solubility in each of the phases. Typically, this will be to extract organic compounds out of an aqueous phase and into an organic phase, but may also include extracting water-soluble impurities from an organic phase into an aqueous phase. Common extractants may be arranged in increasing order of polarity according to the Hildebrand solubility parameter: ethyl acetate < acetone < ethanol < methanol < acetone:water (7:3) < ethanol:water (8:2) < methanol:water (8:2) < water Solid-liquid extractions at laboratory scales can use Soxhlet extractors. A solid sample containing the desired compound along with impurities is placed in the thimble.
Typically, supercritical fluids are completely miscible with each other, so that a binary mixture forms a single gaseous phase if the critical point of the mixture is exceeded. However, exceptions are known in systems where one component is much more volatile than the other, which in some cases form two immiscible gas phases at high pressure and temperatures above the component critical points. This behavior has been found for example in the systems N2-NH3, NH3-CH4, SO2-N2 and n-butane-H2O. The critical point of a binary mixture can be estimated as the arithmetic mean of the critical temperatures and pressures of the two components, For greater accuracy, the critical point can be calculated using equations of state, such as the Peng-Robinson, or group-contribution methods.
Another derivation of Darcy's law is used extensively in petroleum engineering to determine the flow through permeable media — the most simple of which is for a one-dimensional, homogeneous rock formation with a single fluid phase and constant fluid viscosity. Almost all oil reservoirs have a water zone below the oil leg, and some have also a gas cap above the oil leg. When the reservoir pressure drops due to oil production, water flows into the oil zone from below, and gas flows into the oil zone from above (if the gas cap exists), and we get a simultaneous flow and immiscible mixing of all fluid phases in the oil zone. The operator of the oil field may also inject water (and/or gas) in order to improve oil production.
Carbonatites crystallize from CO-rich fluids, which can be produced by partial melting of hydrous-carbonated lherzolite to produce a CO-rich primary magma, by fractional crystallization of an alkaline primary magma, or by separation of a CO-rich immiscible liquid from. These liquids are most commonly forming in association with very deep Precambrian Cratons, like the ones found in Africa and the Canadian Shield. Ferrocarbonatites are the most common type of carbonatite to be enriched in REE, and are often emplaced as late-stage, brecciated pipes at the core of igneous complexes; they consist of fine-grained calcite and hematite, sometimes with significant concentrations of ankerite and minor concentrations of siderite. Large carbonatite deposits enriched in rare-earth elements include Mount Weld in Australia, Thor Lake in Canada, Zandkopsdrift in South Africa, and Mountain Pass in the USA.
Kerosene is a low viscosity, clear liquid formed from hydrocarbons obtained from the fractional distillation of petroleum between , resulting in a mixture with a density of composed of carbon chains that typically contain between 10 and 16 carbon atoms per molecule. It is miscible in petroleum solvents but immiscible in water. The distribution of hydrocarbon length in the mixture making up kerosene ranges from a number of carbon atoms of C6 to C20, although typically kerosene predominantly contains C9 to C16 range hydrocarbons. The ASTM International standard specification D-3699-78 recognizes two grades of kerosene: grades 1-K (less than 0.04% sulfur by weight) and 2-K (0.3% sulfur by weight). 1-K grade kerosene burns cleaner with fewer deposits, fewer toxins, and less frequent maintenance than 2-K grade kerosene, and is the preferred grade of kerosene for indoor kerosene heaters and stoves.
In chemistry, phase-boundary catalysis (PBC) is a type of heterogeneous catalytic system which facilitates the chemical reaction of a particular chemical component in an immiscible phase to react on a catalytic active site located at a phase boundary. The chemical component is soluble in one phase but insoluble in the other. The catalyst for PBC has been designed in which the external part of the zeolite is hydrophobic, internally it is usually hydrophilic, notwithstanding to polar nature of some reactants.H. Nur, S. Ikeda and B. Ohtani, Phase-boundary catalysis: a new approach in alkene epoxidation with hydrogen peroxide by zeolite loaded with alkylsilane-covered titanium oxide, Chemical Communications, 2000, 2235 – 2236. AbstractH. Nur, S. Ikeda and B. Ohtani, Phase-boundary catalysis of alkene epoxidation with aqueous hydrogen peroxide using amphiphilic zeolite particles loaded with titanium oxide, Journal of Catalysis, 2001, (204) 402 – 408. AbstractS.
Microemulsions are clear, thermodynamically stable isotropic liquid mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. The aqueous phase may contain salt(s) and/or other ingredients, and the "oil" may actually be a complex mixture of different hydrocarbons and olefins. In contrast to ordinary emulsions, microemulsions form upon simple mixing of the components and do not require the high shear conditions generally used in the formation of ordinary emulsions. The three basic types of microemulsions are direct (oil dispersed in water, o/w), reversed (water dispersed in oil, w/o) and bicontinuous. In ternary systems such as microemulsions, where two immiscible phases (water and ‘oil’) are present with a surfactant, the surfactant molecules may form a monolayer at the interface between the oil and water, with the hydrophobic tails of the surfactant molecules dissolved in the oil phase and the hydrophilic head groups in the aqueous phase.
Iron is more prone to rusting than (tinned) copper. Cast iron kitchen utensils, in particular, are however less prone to rust if, instead of being scoured to a shine after use, they are simply washed with detergent and water and wiped clean with a cloth, allowing the utensil to form a coat of (already corroded iron and other) material that then acts to prevent further corrosion (a process known as seasoning). Furthermore, if an iron utensil is solely used for frying or cooking with fat or oil, corrosion can be reduced by never heating water with it, never using it to cook with water, and when washing it with water to dry it immediately afterwards, removing all water. Since oil and water are immiscible, since oils and fats are more covalent compounds, and since it is ionic compounds such as water that promote corrosion, eliminating as much contact with water reduces corrosion.

No results under this filter, show 216 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.