Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"caisson disease" Definitions
  1. DECOMPRESSION SICKNESS

25 Sentences With "caisson disease"

How to use caisson disease in a sentence? Find typical usage patterns (collocations)/phrases/context for "caisson disease" and check conjugation/comparative form for "caisson disease". Mastering all the usages of "caisson disease" from sentence examples published by news publications.

" It proves to be a harbinger of doom: Many of the laborers — and Roebling himself — would be stricken with decompression sickness or "caisson disease.
It is also well suited for foundations for which other methods might cause settlement of adjacent structures. Construction workers who leave the pressurized environment of the caisson must decompress at a rate that allows symptom-free release of inert gases dissolved in the body tissues if they are to avoid decompression sickness, a condition first identified in caisson workers, and originally named "caisson disease" in recognition of the occupational hazard. Construction of the Brooklyn Bridge, which was built with the help of pressurised caissons, resulted in numerous workers being either killed or permanently injured by caisson disease during its construction. Barotrauma of the ears, sinus cavities and lungs and dysbaric osteonecrosis are other risks.
Emily Warren Roebling (September 23, 1843 – February 28, 1903) was an engineer known for her contribution to the completion of the Brooklyn Bridge after her husband Washington Roebling developed caisson disease (a.k.a. decompression disease). Her husband was a civil engineer and the chief engineer during the construction of the Brooklyn Bridge.
The main risk factors are bone fractures, joint dislocations, alcoholism, and the use of high-dose steroids. Other risk factors include radiation therapy, chemotherapy, and organ transplantation. Osteonecrosis is also associated with cancer, lupus, sickle cell disease, HIV infection, Gaucher's disease, and Caisson disease. The condition may also occur without any clear reason.
Railroad connections with the southwest and Texas were improved during the 1870s, with the formation of the Cotton Belt Railroad.Primm (1998), 278. In addition to connecting St. Louis with the West, the railroads began to demand connections with the east across the Mississippi. Between 1867 and 1874, work on the Eads Bridge over the Mississippi continued despite setbacks such as caisson disease.
On their return from their European studies, Washington's father died of tetanus following an accident at the bridge site, and Washington took charge of the Brooklyn Bridge's construction as chief engineer.Petrash, Antonia: More than Petticoats: Remarkable New York Women, page 82. Globe Pequot, 2001. As he immersed himself in the project, Washington developed decompression sickness, which was known at the time as "caisson disease".
Primm (1998), 284. Completed in 1874, the Eads Bridge was the first Mississippi River bridge in St. Louis Excavations for the bridge piers began in September 1867 and continued through 1871, using the relatively new pneumatic caisson technique.Primm (1998), 286. However, the effects of pneumatic caissons were poorly understood, leading to the deaths of 14 workers due to caisson disease, also known as the bends.
Later, when technological advances allowed the use of pressurisation of mines and caissons to exclude water ingress, miners were observed to present symptoms of what would become known as caisson disease, the bends, and decompression sickness. Once it was recognized that the symptoms were caused by gas bubbles, and that recompression could relieve the symptoms, further work showed that it was possible to avoid symptoms by slow decompression, and subsequently various theoretical models have been derived to predict low-risk decompression profiles and treatment of decompression sickness. By the late 19th century, as salvage operations became deeper and longer, an unexplained malady began afflicting the divers; they would suffer breathing difficulties, dizziness, joint pain and paralysis, sometimes leading to death. The problem was already well known among workers building tunnels and bridge footings operating under pressure in caissons and was initially called "caisson disease" but later the "bends" because the joint pain typically caused the sufferer to stoop.
All types of parachuting techniques are dangerous, but HALO/HAHO carry special risks. At high altitudes (greater than 22,000 feet, or 6,700 m), the partial pressure of oxygen in the Earth's atmosphere is low. Oxygen is required for human respiration and lack of pressure can lead to hypoxia. Also, rapid ascent in the jump aircraft without all nitrogen flushed from the bloodstream can lead to decompression sickness, also known as caisson disease or "the bends".
Stone was added to the chamber, which caused the caisson to sink. Workers dove into the caisson to shovel sand into a pump that shot it out into the air so the masonry could be sunk into the riverbed. Numerous workers who operated in the Eads Bridge caissons, still among the deepest ever sunk, suffered from "caisson disease" (also known as "the bends" or decompression sickness). Fifteen workers died, two other workers were permanently disabled, and 77 were severely afflicted.
Decompression sickness (DCS; also known as divers' disease, the bends, aerobullosis, or caisson disease) describes a condition arising from dissolved gases coming out of solution into bubbles inside the body on depressurisation. DCS most commonly refers to problems arising from underwater diving decompression (i.e., during ascent), but may be experienced in other depressurisation events such as emerging from a caisson, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.
Many workers were killed by the disease on projects such as the Brooklyn Bridge and the Eads Bridge and it was not until the 1890s that it was understood that workers had to decompress slowly, to prevent the formation of dangerous bubbles in tissues.E. Hugh Snell, Compressed Air Illness Or So-called Caisson Disease H. K. Lewis, 1896 pp. Air under moderately high pressure, such as is used when diving below about , has an increasing narcotic effect on the nervous system. Nitrogen narcosis is a hazard when diving.
Paul Bert (17 October 1833 – 11 November 1886) was a French physiologist who graduated at Paris as doctor of medicine in 1863, and doctor of science in 1866. He was appointed professor of physiology successively at Bordeaux (1866) and the Sorbonne (1869). Paul Bert was given the nickname of "Father of Aviation Medicine" after his work, La Pression barometrique (1878), a comprehensive investigation on the physiological effects of air-pressure, which pointed out that the symptoms of caisson disease could be avoided by means of very slow decompression. However, his work did not furnish data about safe decompression rates.
It was known as early as the 17th century that workers in diving bells experienced shortness of breath and risked asphyxia, relieved by the release of fresh air into the bell. Such workers also experienced pain and other symptoms when returning to the surface, as the pressure was relieved. Denis Papin suggested in 1691 that the working time in a diving bell could be extended if fresh air from the surface was continually forced under pressure into the bell. By the 19th century, caissons were regularly used in civil construction, but workers experienced serious, sometimes fatal, symptoms on returning to the surface, a syndrome called caisson disease or decompression sickness.
This condition was unknown at the time and was first called "caisson disease" by the project physician, Andrew Smith. Between January 25 and May 31, 1872, Smith treated 110 cases of decompression sickness, while three workers died from the disease. When iron probes underneath the Manhattan caisson found the bedrock to be even deeper than expected, Washington Roebling halted construction due to the increased risk of decompression sickness. After the Manhattan caisson reached a depth of with an air pressure of , Washington deemed the sandy subsoil overlying the bedrock beneath to be sufficiently firm, and subsequently infilled the caisson with concrete in July 1872.
Washington Roebling himself suffered a paralyzing injury as a result of caisson disease shortly after ground was broken for the Brooklyn tower foundation. His debilitating condition left him unable to supervise the construction in person, so he designed the caissons and other equipment from his apartment. His wife Emily Warren Roebling not only provided written communications between her husband and the engineers on site, but also understood mathematics, calculations of catenary curves, strengths of materials, bridge specifications, and the intricacies of cable construction. She spent the next 11 years helping supervise the bridge's construction, taking over much of the chief engineer's duties, including day-to-day supervision and project management.
As noted above, further extension of the wet bell concept is the moon-pool- equipped underwater habitat, where divers may spend long periods in dry comfort while acclimated to the increased pressure experienced underwater. By not needing to return to the surface between excursions into the water, they can reduce the necessity for decompression (gradual reduction of pressure), after each excursion, required to avoid problems with nitrogen bubbles releasing from the bloodstream (the bends, also known as caisson disease). Such problems can occur at pressures greater than , corresponding to a depth of of water. Divers in an ambient pressure habitat will require decompression when they return to the surface.
Anton Hermann Victor Thomas Schrötter (5 August 1870 – 6 January 1928), an Austrian physiologist and physician who was a native of Vienna, was a pioneer of aviation and hyperbaric medicine,Die Familie Schrötter and made important contributions in the study of decompression sickness. He studied medicine and natural sciences at the Universities of Vienna and Strasbourg, earning his medical degree in 1894, and during the following year receiving his doctorate of philosophy. He was active in many fields of medicine and physiology. His first interest from 1895 was the investigation and combating of caisson disease, and during his tenure in Nussdorf he studied the numerous diseases that have occurred and was looking for ways of treatment and prevention.
The principal features of a caisson are the workspace, pressurised by an external air supply, and the access tube with an airlock When workers leave a pressurized caisson or a mine that has been pressurized to keep water out, they will experience a significant reduction in ambient pressure. A similar pressure reduction occurs when astronauts exit a space vehicle to perform a space-walk or extra-vehicular activity, where the pressure in their spacesuit is lower than the pressure in the vehicle. The original name for DCS was "caisson disease". This term was introduced in the 19th century, when caissons under pressure were used to keep water from flooding large engineering excavations below the water table, such as bridge supports and tunnels.
Halftime is also termed Half- life when linked to exponential processes such as radioactive decay. Haldane's five compartments (halftimes: 5, 10, 20, 40, 75 minutes) were used in decompression calculations and staged decompression procedures for fifty years. Previous theories to Haldane worked on "uniform compression", as Paul Bert pointed in 1878 that very slow decompression could avoid the caisson disease, then Hermann von Schrötter proposed in 1895 the safe "uniform decompression" rate to be of "one atmosphere per 20 minutes". Haldane in 1907 worked on "staged decompression" – decompression using a specified relatively rapid ascent rate, interrupted by specified periods at constant depth – and proved it to be safer than "uniform decompression" at the rates then in use, and produced his decompression tables on that basis.
It is thought that the figure of 57 deaths excluded those who died working on the approaches to the bridge, as those parts were completed by a subcontractor, as well as those who died after the Sick and Accident Club stopped. Of the 73 recorded deaths, 38 were as a result of falling, 9 of being crushed, 9 drowned, 8 struck by a falling object, 3 died in a fire in a bothy, 1 of caisson disease, and the cause of five deaths is unknown. The Sick and Accident Club was founded in 1883, and membership was compulsory for all contractors' employees. It would provide medical treatment to men and sometimes their families, and pay them if they were unable to work.
When the pressure of gases in a bubble exceed the combined external pressures of ambient pressure and the surface tension of the bubble-liquid interface, the bubbles grow, and this growth can damage tissue. If the dissolved inert gases come out of solution within the tissues of the body and form bubbles, they may cause the condition known as decompression sickness, or DCS, also known as divers' disease, the bends or caisson disease. However, not all bubbles result in symptoms, and Doppler bubble detection shows that venous bubbles are present in a significant number of asymptomatic divers after relatively mild hyperbaric exposures. Since bubbles can form in or migrate to any part of the body, DCS can produce many symptoms, and its effects may vary from joint pain and rashes to paralysis and death.
The first recorded experimental work related to decompression was conducted by Robert Boyle, who subjected experimental animals to reduced ambient pressure by use of a primitive vacuum pump. In the earliest experiments the subjects died from asphyxiation, but in later experiments, signs of what was later to become known as decompression sickness were observed. Later, when technological advances allowed the use of pressurisation of mines and caissons to exclude water ingress, miners were observed to present symptoms of what would become known as caisson disease, the bends, and decompression sickness. Once it was recognized that the symptoms were caused by gas bubbles, and that recompression could relieve the symptoms, further work showed that it was possible to avoid symptoms by slow decompression, and subsequently various theoretical models have been derived to predict low-risk decompression profiles and treatment of decompression sickness.
The first recorded experimental work related to decompression was conducted by Robert Boyle, who subjected experimental animals to reduced ambient pressure by use of a primitive vacuum pump. In the earliest experiments the subjects died from asphyxiation, but in later experiments signs of what was later to become known as decompression sickness were observed. Later, when technological advances allowed the use of pressurisation of mines and caissons to exclude water ingress, miners were observed to present symptoms of what would become known as caisson disease, compressed air illness, the bends, and decompression sickness. Once it was recognised that the symptoms were caused by gas bubbles, and that re-compression could relieve the symptoms, Paul Bert showed in 1878 that decompression sickness is caused by nitrogen bubbles released from tissues and blood during or after decompression, and showed the advantages of breathing oxygen after developing decompression sickness.
Health effects in divers include damage to the joints and bones similar to symptoms attributed to caisson disease in compressed air workers, which was found to be caused by too rapid a decompression to atmospheric pressure after long exposure to a pressurised environment When a diver descends in the water column the ambient pressure rises. Breathing gas is supplied at the same pressure as the surrounding water, and some of this gas dissolves into the diver's blood and other tissues. Inert gas continues to be taken up until the gas dissolved in the diver is in a state of equilibrium with the breathing gas in the diver's lungs, (see: "saturation diving"), or the diver moves up in the water column and reduces the ambient pressure of the breathing gas until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again. Dissolved inert gases such as nitrogen or helium can form bubbles in the blood and tissues of the diver if the partial pressures of the dissolved gases in the diver gets too high when compared to the ambient pressure.

No results under this filter, show 25 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.