Sentences Generator
And
Your saved sentences

No sentences have been saved yet

779 Sentences With "amplitudes"

How to use amplitudes in a sentence? Find typical usage patterns (collocations)/phrases/context for "amplitudes" and check conjugation/comparative form for "amplitudes". Mastering all the usages of "amplitudes" from sentence examples published by news publications.

Diagrams with no loops have amplitudes of weight 0; the amplitudes of diagrams with one loop are all periods of mixed Tate motives and have, at most, a weight of 4.
But if you don't look, the two amplitudes can undergo interference — producing effects that depend on both amplitudes, and that you can't explain by the qubit's having been 0 or by its having been 1.
Those strengths, or amplitudes, translate into the probability of ending up with each outcome.
Those values are accompanied by amplitudes, which you might think of as signal strengths.
An equation called the "wave function" describes all the possible values with their amplitudes.
A particle can have two different amplitudes at the same time — a state called superposition.
This increases the amplitudes of the electric fields, accelerating the charged particles that pass through.
They both have amplitudes (indicating how strong they are) and wavelengths (indicating the distance between peaks).
The amplitudes of particles can also cancel one another out like opposing waves in water would.
That's 2 to the 2250,29 amplitudes, much more than the number of atoms in the observable universe.
Choose from different frequencies, amplitudes, and torque to increase blood flow, release stored lactic acid, and relieve that tension.
It features five different frequencies, amplitudes, and torque so you can customize your approach according to your muscle needs.
If all amplitudes were multiple zeta values, it would give physicists a well-defined class of numbers to work with.
These sounds come from turning information on the star's light output into sound waves with amplitudes (intensities) and frequencies (pitches or colors).
But the usual analysis techniques—like plotting the amplitudes of the modes over time in a visual graph—didn't reveal anything noteworthy.
If you have a mere 260 qubits, as in Google's Sycamore chip, that's still 253 to the 230 amplitudes, or about 270 quadrillion.
Both have frequencies—which we interpret as color in light waves and pitch in sound waves—as well as amplitudes, meaning brightness or loudness.
The problem is that it isn't obvious exactly which combination of frequencies and amplitudes are necessary to suspend a given object in the air.
The hotter the body of matter, the higher the frequencies of oscillation and the higher the amplitudes of oscillation at each frequency of oscillation.
In this case, the German team built a system that reflected sound waves of different amplitudes and frequencies off an object from many different angles.
In fact, amplitudes are continuous quantities (and, indeed, complex numbers) and, for a plausible experimental precision, one might store as many as 216 bits, Aaronson said.
This kind of tiny matter is best described in states called amplitudes (like waves, since the tiniest bits of matter can act as both particles and waves).
If two of these particles interact and separate, they become entangled, meaning that one wave function now describes them both, with amplitudes assigned to both particles' values simultaneously.
The lensing amplitudes of the CMB have been measured by previous observatories such as the Wilkinson Microwave Anisotropy Probe, the South Pole Telescope, and the Atacama Cosmology Telescope.
They take on "zero" and "one" simultaneously with different strengths (technically it's a linear combination of zero and one with complex constants serving as "probability amplitudes") while they're calculating.
If quantum mechanics seems to predict that you can harness an exponential number of amplitudes for computation, then so much the worse for our present understanding of quantum mechanics.
To all appearances, a 53-qubit device really was able to harness 9 quadrillion amplitudes for computation, surpassing (albeit for a special, useless task) all the supercomputers on earth.
While all the amplitudes physicists come across today may be periods of mixed Tate motives, "there are monsters lurking out there that throw a spanner into the works," Brown said.
Periods and amplitudes were presented together for the first time in 1994 by Kreimer and David Broadhurst, a physicist at the Open University in England, with a paper following in 1995.
By ensuring that amplitudes which represent wrong answers cancel each other out, while those that represent the right one reinforce, programmers can home in with high confidence on the correct solution.
But the building blocks of the world, like electrons and photons, obey different, alien rules of probability, involving numbers — the amplitudes — that can be positive, negative, or even complex (involving the square root of -1).
Changing states, shifting qubit couplings and so on represent a vast cross-multiplication of all those states and combinations, with probability amplitudes reinforcing and diminishing until the system settles into a final state that represents the answer.
Soft sounds are boosted to bring them closer to the loud ones, but those loud signals are also processed within an inch of their lives to get them to blow past peak amplitudes allowed by digital systems.
In the course of a quantum computer's crunching, these amplitudes can (again like waves) interfere, positive with positive and negative with negative—in essence, to reduce the probability of the wrong answer and boost that of the right one.
Whereas it is easy to imagine an equation that predicts a low or even zero probability of a given event, it is much harder to reckon with what are called probability amplitudes in quantum mechanics, which can actually be negative.
Extensive observations of radiation emitted by matter at different temperatures, however, show us clearly that the physical properties of radiation, the frequencies and amplitudes of oscillation making up radiation, increase in value rapidly with increasing temperature of the radiating body.
Simulating quantum mechanics — that is, overcoming the exponential explosion of amplitudes in nature via a computer equipped with the same power — was the original application that the physicist Richard Feynman envisioned when he proposed the idea of a quantum computer in the early 1980s.
JAWKU Muscle Blaster V2 Cordless Percussion Massage Gun Meant to assist your own body's natural healing, the JAWKU Muscle Blaster Massage Gun features five different frequencies, amplitudes, and torque, so you can customize your approach to recovery and workout prep according to your muscle needs.
Based on such analyses, he said that the most crucial distinctions between prairie dogs' calls are not in length or the number of discrete chirps but rather in the amplitudes of overlapping sound waves in each call — the composite of which is essentially their tone.
The result are very powerful waves (they have high-frequencies) still gentle enough (low amplitudes) to manipulate fragile stem cells; many low-energy droplets can be created very quickly, potentially cutting the time it takes to deliver a nebulized vaccine to a patient from 30 minutes to 30 seconds.
Traditionally, the introductory view of the pendulum is to show that for small amplitudes the motion of the mass is like a simple harmonic motion (motion of a mass on a spring) with a period of oscillation that depends on the length of the string and the local gravitational field.
The work led mathematicians to speculate that all amplitudes were periods of mixed Tate motives—a special kind of motive named after John Tate, emeritus professor at Harvard University, in which all the periods are multiple values of one of the most influential constructions in number theory, the Riemann zeta function.
"Although these signals fall within LISA's frequency band, the amplitudes are sufficiently small that they will not likely be observed except at source distances within [around 33,000 to 333,000 light years], which, if current estimates of the [white dwarf to intermediate-mass black hole] disruption rate... are correct, would be extremely rare events," the authors write in the paper.
The off-energy shell amplitudes do not coincide with the Feynman amplitudes, and they depend on the orientation of the light-front plane. In the covariant formulation, this dependence is explicit: the amplitudes are functions of \omega. This allows one to apply to them in full measure the well known techniques developed for the covariant Feynman amplitudes (constructing the invariant variables, similar to the Mandelstam variables, on which the amplitudes depend; the decompositions, in the case of particles with spins, in invariant amplitudes; extracting electromagnetic form factors; etc.). The irreducible off-energy- shell amplitudes serve as the kernels of equations for the light-front wave functions.
In theoretical particle physics, maximally helicity violating amplitudes (MHV) are amplitudes with n massless external gauge bosons, where n-2 gauge bosons have a particular helicity and the other two have the opposite helicity. These amplitudes are called MHV amplitudes, because at tree level, they violate helicity conservation to the maximum extent possible. The tree amplitudes in which all gauge bosons have the same helicity or all but one have the same helicity vanish. MHV amplitudes may be calculated very efficiently by means of the Parke–Taylor formula.
Amplitude refers to the distance traveled during each vibratory cycle. Higher amplitudes tend to be used with lower frequencies, and vice versa. Higher amplitudes increase heat input at the cost of cleanliness and dimensional tolerances, making them more useful for larger parts. Lower amplitudes range from 0.7-1.8mm, while higher amplitudes describe cycles that cover 2-4mm.
Feynman amplitudes are written in terms of spinor products of wave functions for massless fermions, and then evaluated numerically before the amplitudes are squared. Taking into account fermion masses implies that Feynman amplitudes are decomposed into vertex amplitudes by splitting the internal lines into wave function of fermions and polarization vectors of gauge bosons. All helicity configuration can be computed independently.
These on-energy-shell amplitudes coincide with the on-mass-shell amplitudes given by the Feynman rules. However, the dependence on \omega can survive because of approximations.
Both the quadrature and simple multiplier phase detectors have an output that depends on the input amplitudes as well as the phase difference. In practice, the input amplitudes are normalized.
His most influential work is the discovery of a hidden Yangian symmetry of scattering amplitudes in N=4 supersymmetric gauge theory together with Drummond and Henn . He has co-authored a text book on scattering amplitudes in gauge theories which is the first topical book on modern on-shell techniques for scattering amplitudes.
The frequencies can vary from 900 to 3600 cycles per minute (CPM) and the amplitude can vary from 0 to . High frequencies, 1800 CPM or greater, and small amplitudes are used for fine finishes or delicate parts, whereas large amplitudes are used for heavier cutting. High frequencies and amplitudes can roll burrs and peen edges. The circulation of parts is best at higher frequencies, therefore, heavy pieces are run at these high frequencies with moderate amplitudes of .
Annual amplitudes also vary within ocean basins and along stretches of coastline. On the European side of the North Atlantic Ocean annual amplitudes generally increase from south to north, in contrast with the American side where annual amplitudes generally decrease from south to north. Similarly, on the American side of the North Pacific Ocean annual amplitudes generally increase from south to north (with increased amplitudes in the north likely linked to meteorological forcing), while the western side of the Pacific generally sees annual amplitudes decrease with increasing latitude. Determining the exact cause of the annual cycle is difficult as there are several factors that influence the amplitude and timing of the annual cycle along the coast including winds, water temperature and salinity, local bathymetry, coastal geometry, ocean currents, land movements, and river outflows.
For small amplitudes, the higher order terms have little effect. For larger amplitudes, the nonlinearity is pronounced. Consequently, for low distortion, the oscillator's output amplitude should be a small fraction of the amplifier's dynamic range.
CMAPs show small amplitudes but normal latency and conduction velocities. If repeated impulses are administered (2 per second or 2 Hz), it is normal for CMAP amplitudes to become smaller as the acetylcholine in the motor end plate is depleted. In LEMS, this decrease is larger than observed normally. Eventually, stored acetylcholine is made available, and the amplitudes increase again.
This intensity can be quantified by the acoustic nonlinearity parameter (β). β is related to first and second harmonic amplitudes. These amplitudes can be measured by harmonic decomposition of the ultrasonic signal through fast Fourier transformation or wavelet transformation.
In chiral spin state, different bond configurations can have complex amplitudes, while in Z2 spin liquid state, different bond configurations only have real amplitudes. The RVB state on triangle lattice also realizes the Z2 spin liquid, where different bond configurations only have real amplitudes. The toric code model is yet another realization of Z2 spin liquid (and Z2 topological order) that explicitly breaks the spin rotation symmetry and is exactly soluble.
Internal wave amplitudes of around have been observed, generating flow speeds as great as .
He is an originator of Parke–Taylor amplitudes, which represent a new approach to computing scattering amplitudes in quantum chromodynamics using symmetry methods such as supersymmetry. Parke is also an expert on neutrino physics as well as the physics of the top quark.
In optics two beams of light are said to interfere coherently, when the phase difference between their waves is constant; if this phase difference is random or changing the beams are incoherent. The coherent superposition of wave amplitudes is called first order interference. In analogy to that we have intensity or second order Hanbury Brown and Twiss (HBT) interference, which generalizes the interference between amplitudes to that between squares of amplitudes, i.e. between intensities.
The shorter waves travel faster than the group as a whole, but their amplitudes diminish as they approach the leading edge of the group. The longer waves travel more slowly, and their amplitudes diminish as they emerge from the trailing boundary of the group.
Additionally, waves of different amplitudes will generate different pressure gradients, contributing to the non-linear effect.
With Vadim Knizhnik he made the Belavin–Knizhnik theorem on dual amplitudes in string theory (1986).
By these rules, the light-front amplitudes are represented as the integrals over the momenta of particles in intermediate states. These integrals are three-dimensional, and all the four-momenta k_i are on the corresponding mass shells k_i^2=m_i^2, in contrast to the Feynman rules containing four-dimensional integrals over the off-mass-shell momenta. However, the calculated light-front amplitudes, being on the mass shell, are in general the off-energy-shell amplitudes. This means that the on-mass-shell four-momenta, which these amplitudes depend on, are not conserved in the direction x^- (or, in general, in the direction \omega).
In an essay presenting some of Koenig's conclusions from his work in the studio, he spoke of the individual "amplitudes", which he wanted to determine. A sine tone is already a number of consecutive "amplitudes". Nowadays, the term "sample" refers to what Koenig meant, namely the elongation (distance from the null axis) of a signal to some point in time. Later Koenig developed a computer program that could produce episodes of "amplitudes" without regard to superordinate "instrumental" parameters ().
Finite transition amplitudes are obtained only by summing over states with an infinite number of soft photons.
Tomasz Robert Taylor (born February 23, 1954) is a Polish-American theoretical physicist and faculty at Northeastern University in Boston, Massachusetts, United States of America. He obtained his PhD degree from the University of Warsaw, Poland in 1981 under the supervision of Stefan Pokorski. He is a descendant of John Taylor who originated from Fraserburgh in Scotland and emigrated to the Polish-Lithuanian Commonwealth c.1676. He is known for his discovery, with Stephen Parke, of Parke–Taylor amplitudes, also known as maximally helicity violating (MHV) amplitudes; his pioneering use of supersymmetry for computing scattering amplitudes in quantum chromodynamics; his seminal work, with Ignatios Antoniadis, Edi Gava and Kumar Narain, on topological string amplitudes; his formulation, with Ignatios Antoniadis and Hervé Partouche, of the first four-dimensional quantum field theory with partial supersymmetry breaking; his extensive studies, with Stephan Stieberger, of superstring scattering amplitudes.
Frieden's principle of extreme physical information or EPI states that extremalizing I − J by varying the system probability amplitudes gives the correct amplitudes for most or even all physical theories. The EPI principle was recently proven. It follows from a system of mathematical axioms of L. Hardy defining all known physics.
Such processes would involve exponential decay of the amplitudes, but the solutions of the two-state system are oscillatory.
Isochronal tail current amplitudes were normalized to the maximum amplitude obtained from that oocyte and plotted versus test potential.
An overview of three solar cycles shows the relationship between the sunspot cycle, galactic cosmic rays, and the state of our near-space environment. The Waldmeier effect names the observation that cycles with larger maximum amplitudes tend to take less time to reach their maxima than cycles with smaller amplitudes;Waldmeier M., 1939, Astron. Mitt. Zurich, 14, 439 maximum amplitudes are negatively correlated to the lengths of earlier cycles, aiding prediction. Solar maxima and minima also exhibit fluctuations at time scales greater than solar cycles.
Tidal Observations. Retrieved on 2008-04-15. However, at greater heights the amplitudes of the tides can become very large. In the mesosphere (heights of ~ 50 – 100 km) atmospheric tides can reach amplitudes of more than 50 m/s and are often the most significant part of the motion of the atmosphere.
Marvin L. Goldberger, Yoichiro Nambu and Reinhard Oehme,, Ann.Phys.(N.Y.) 2:226(1957) "Dispersion Relations for Nucleon-Nucleon Scattering." In accordance with the results of Oehme about the analytic continuation of amplitudes, these relations contain integrals involving nucleon-nucleon and nucleon-antinucleon total cross sections, as well as absolute squares of annihilation amplitudes.
If the waves are of the same frequency in a fixed phase relationship, then there will generally be positions at which the two waves are in phase and their amplitudes add, and other positions where they are out of phase and their amplitudes (partially or fully) cancel. This is called an interference pattern.
This happens as follows: Due to CP-symmetry violating electroweak interactions, some amplitudes involving quarks are not equal to the corresponding amplitudes involving anti-quarks, but rather have opposite phase (see CKM matrix and Kaon); since time reversal takes an amplitude to its complex conjugate, CPT-symmetry is conserved. Though some of their amplitudes have opposite phases, both quarks and anti-quarks have positive energy, and hence acquire the same phase as they move in space-time. This phase also depends on their mass, which is identical but depends both on flavor and on the Higgs VEV which changes along the domain wall. Thus certain sums of amplitudes for quarks have different absolute values compared to those of anti-quarks.
In that case, in fact, latencies (ms) and amplitudes (mV) of H-wave can be compared. H-reflex amplitudes measured by EMG are shown to decrease significantly with applied pressure such as massage and tapping to the cited muscle. The amount of decrease seems to be dependent on the force of the pressure, with higher pressures resulting in lower H-reflex amplitudes. H-reflex levels return to baseline immediately after pressure is released except in high pressure cases which had baseline levels returned within the first 10 seconds.
Weber's law does not quite hold for loudness. It is a fair approximation for higher intensities, but not for lower amplitudes.
This connection is made more manifest once the correlation function is expressed in terms of Mellin amplitudes as suggested by Penedones.
The B-model also contains fundamental strings, but their scattering amplitudes depend entirely upon the complex structure and are independent of the Kähler structure. In particular, they are insensitive to worldsheet instanton effects and so can often be calculated exactly. Mirror symmetry then relates them to A model amplitudes, allowing one to compute Gromov–Witten invariants. The string field theory of the closed strings of the B-model is known as the Kodaira–Spencer theory of gravity and was developed by Michael Bershadsky, Sergio Cecotti, Hirosi Ooguri and Cumrun Vafa in Kodaira–Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes.
Extensions of the PCAC ideas allowed Steven Weinberg to calculate the amplitudes for collisions which emit low energy pions from the amplitude for the same process with no pions. The amplitudes are those given by acting with symmetry currents on the external particles of the collision. These successes established the basic properties of the strong interaction vacuum well before QCD.
An important source is latent heat release due to deep convection in the tropics. The primary source for the 24-hr tide is in the lower atmosphere where surface effects are important. This is reflected in a relatively large non-migrating component seen in longitudinal differences in tidal amplitudes. Largest amplitudes have been observed over South America, Africa and Australia.
A-model topological string theory amplitudes are used to compute prepotentials in N=2 supersymmetric gauge theories in four and five dimensions. The amplitudes of the topological B-model, with fluxes and or branes, are used to compute superpotentials in N=1 supersymmetric gauge theories in four dimensions. Perturbative A model calculations also count BPS states of spinning black holes in five dimensions.
While long term irregular behavior in the temporal variations of the pulsation amplitudes is possible when amplitude equations apply, this is not the general situation. Indeed, for the majority of the observations and modeling, the pulsations of these stars occur with constant Fourier amplitudes, leading to regular pulsations that can be periodic or multi-periodic (quasi-periodic in the mathematical literature).
Slowly pulsating B (SPB) stars are hot main-sequence stars slightly less luminous than the Beta Cephei stars, with longer periods and larger amplitudes.
The ERN appears to be modulated by the environment during childhood, with children who experience early adversity showing evidence of less negative ERN amplitudes.
The 16-bit digital system of Red Book audio CD has 216= 65,536 possible signal amplitudes, theoretically allowing for an SNR of 98 dB.
Phase conjugation is a physical transformation of a wave field where the resulting field has a reversed propagation direction but keeps its amplitudes and phases.
The key insight is that the comparison of these amplitudes can be transformed into comparing the acceptance probability of a PP machine with 1/2.
The Fourier transform, S(f) (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies (at odd harmonics) and their amplitudes (1/odd number).
They have wavelengths of thousands of kilometers and amplitudes in the tens of meters. ;Rossby Waves Rossby waves, or planetary waves are huge, slow waves generated in the troposphere by temperature differences between the ocean and the continents. Their major restoring force is the change in Coriolis force with latitude. Their wave amplitudes are usually in the tens of meters and very large wavelengths.
Peak amplitudes are typically below 1 mA and do not produce phase charges strong enough to excite peripheral nerve fibers and reach the sensory threshold. Stimulators that work at this level are termed microcurrent electrical nerve stimulators (MENS). In addition to the low amplitudes, pulse durations are short, thereby activating neither the muscle nor the nerve. No studies have shown clinical effectiveness of subsensory-level stimulation.
Light curve of δ Cephei showing magnitude versus pulsation phase Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spectral properties, the amplitudes, periods, and regularity of their brightness changes are still important factors. Some types such as Cepheids have extremely regular light curves with exactly the same period, amplitude, and shape in each cycle. Others such as Mira variables have somewhat less regular light curves with large amplitudes of several magnitudes, while the semiregular variables are less regular still and have smaller amplitudes.
Crystallographic Image Processing (CIP) of a high-resolution electron microscopy (HREM) image of α-Ti2Se recorded with a 300 kV TEM (JEOL 3010 UHR, point resolution 1.7 Å) along the [001] zone axis. In the first step the Fourier transform of the HREM image is calculated (only the amplitudes are shown). The position of the white ring marks the first crossover of the contrast transfer function (CTF) which is used to determine the defocus value (Δf = -650 Å). The reciprocal lattice is then indexed and amplitudes and phases are extracted. The amplitudes and phases can be used to calculate the averaged image for one unit cell via Fourier synthesis.
Irregular variable supergiants of late spectral types having amplitudes of about 1 mag in V The M2 supergiant TZ Cassiopeiae is given as a representative example.
To shorten the testing time, the amplitudes are amplified. The excitation spectra used are broad-band and can be evaluated most effectively using vibration-fatigue methods.
A different algorithm that creates ambiguities of pitch height by manipulating the relative amplitudes of the odd and even harmonics, was developed by Diana Deutsch and colleagues.
The source produces a number of harmonics of varying amplitudes, which travel through the vocal tract and are either amplified or attenuated to produce a speech sound.
Differential equations that characterized the springs at large displacements were integrated, while taking into account the deviation from the isochronism of the resonator at different balance amplitudes.
For two quantum systems with spaces and and given states and respectively, their combined state can be expressed as a function on , that gives the product of respective probability measures. In other words, amplitudes of a non-entangled composite state are products of original amplitudes, and respective observables on the systems 1 and 2 behave on these states as independent random variables. This strengthens the probabilistic interpretation explicated above.
Phase contrast. Leika Science Lab, 09 June 2011. "If two waves interfere, the amplitude of the resulting light wave will be equal to the vector sum of the amplitudes of the two interfering waves." If a crest of a wave meets a crest of another wave of the same frequency at the same point, then the amplitude is the sum of the individual amplitudes—this is constructive interference.
Grossly changed phase relationships, without changing amplitudes, can be audible but the degree of audibility of the type of phase shifts expected from typical sound systems remains debated.
If the set of eigenstates to which the system can jump upon measurement of is the same as the set of eigenstates for measurement of , then subsequent measurements of either or always produce the same values with probability of 1, no matter the order in which they are applied. The probability amplitudes are unaffected by either measurement, and the observables are said to commute. By contrast, if the eigenstates of and are different, then measurement of produces a jump to a state that is not an eigenstate of . Therefore, if the system is known to be in some eigenstate of (all probability amplitudes zero except for one eigenstate), then when is observed the probability amplitudes are changed.
As it is shown in the above, the amplitudes of the currents in the \alpha\beta\gamma reference frame are the same of that in the natural reference frame.
In 2017, Mizera and Arkani-Hamed et al.. showed that the associahedron plays a central role in the theory of scattering amplitudes for the bi-adjoint cubic scalar theory. In particular, there exists an associahedron in the space of scattering kinematics, and the tree level scattering amplitude is the volume of the dual associahedron. The associahedron also helps explaining the relations between scattering amplitudes of open and closed strings in string theory. See also Amplituhedron.
Function s(x) (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. Their summation is called a Fourier series. The Fourier transform, S(f) (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies (at odd harmonics) and their amplitudes (1/odd number). The sine and cosine functions are fundamental to the theory of periodic functions, such as those that describe sound and light waves.
The twistor approach simplifies calculations of particle interactions. In a conventional perturbative approach to quantum field theory, such interactions may require the calculation of thousands of Feynman diagrams, most describing off-shell "virtual" particles which have no directly observable existence. In contrast, twistor theory provides an approach in which scattering amplitudes can be computed in a way that yields much simpler expressions. Amplituhedron theory calculates scattering amplitudes without referring to such virtual particles.
The classical equations that Heisenberg hoped to use to form quantum theoretical equations would first yield the amplitudes, and in classical physics one could compute the intensities simply by squaring the amplitudes. But Heisenberg saw that "the simplest and most natural assumption would be" B.L.Van der Waerden, Sources of Quantum Mechanics, p. 275f to follow the lead provided by recent work in computing light dispersion done by Kramers.H. A. Kramers, Nature 113 (1924) 673.
In a stable oscillator, the average loop gain will be one. Although the limiting action stabilizes the output voltage, it has two significant effects: it introduces harmonic distortion and it affects the frequency stability of the oscillator. The amount of distortion is related to the extra loop gain used for startup. If there's a lot of extra loop gain at small amplitudes, then the gain must decrease more at higher instantaneous amplitudes.
Phase shift through a beam splitter with a dielectric coating. Beam splitters are sometimes used to recombine beams of light, as in a Mach–Zehnder interferometer. In this case there are two incoming beams, and potentially two outgoing beams. But the amplitudes of the two outgoing beams are the sums of the (complex) amplitudes calculated from each of the incoming beams, and it may result that one of the two outgoing beams has amplitude zero.
Researchers have found evidence that the P2 is involved in memory processes. Differences in P200 peak amplitude suggest that anterior and posterior distributional differences are elicited during encoding of words for rote and elaborative memory tasks. While encoding the words across both memory tasks, participants who subsequently recalled less generated larger frontal amplitudes and smaller parietal/occipital amplitudes than those who recalled more.Dunn, B. R., Dunn, D. A., Languis, M., & Andrew, D. (1998).
BCFW recursion, also known as the Britto–Cachazo–Feng–Witten (BCFW) on-shell recursion method, is a way of calculating scattering amplitudes. Extensive use is now made of these techniques.
FEFF is used as external program to calculate basic spectra for XANES fitting using FitIt. Atomic scattering amplitudes and phase shifts are used for EXAFS fitting in IFEFFIT program suite.
More advanced function generators are called arbitrary waveform generators (AWG). They use direct digital synthesis (DDS) techniques to generate any waveform that can be described by a table of amplitudes.
This leads to a gradual decrease in amplitudes of action potentials. After 4 minutes, the cell is in a permanent state of depolarization, which prevents the generation of further action potentials⁠.
When the probabilities are calculated, the −1 is squared, (−1)2 = 1, so the predicted physics is the same as in the starting position. Also, in a spin- particle there are only two spin states and the amplitudes for both change by the same −1 factor, so the interference effects are identical, unlike the case for higher spins. The complex probability amplitudes are something of a theoretical construct which cannot be directly observed. If the probability amplitudes rotated by the same amount as the detector, then they would have changed by a factor of −1 when the equipment was rotated by 180° which when squared would predict the same output as at the start, but experiments show this to be wrong.
This has allowed for the discovery of many new variable stars, often of very small amplitudes. Multiple period-luminosity relationships have been discovered, grouped into regions with ridges of closely spaced parallel relationships. Some of these correspond to the known Miras and semi-regulars, but an additional class of variable star has been defined: OGLE Small Amplitude Red Giants or OSARGs. OSARGs have amplitudes of a few thousandths of a magnitude and semi-regular periods of 10 – 100 days.
Quantization converts classical fields into operators acting on quantum states of the field theory. The lowest energy state is called the vacuum state. The reason for quantizing a theory is to deduce properties of materials, objects or particles through the computation of quantum amplitudes, which may be very complicated. Such computations have to deal with certain subtleties called renormalization, which, if neglected, can often lead to nonsense results, such as the appearance of infinities in various amplitudes.
The amplitude of the ERN is sensitive to the intent and motivation of participants. When a participant is instructed to strive for accuracy in responses, observed amplitudes are typically larger than when participants are instructed to strive for speed. Monetary incentives typically result in larger amplitudes as well. Latency of the ERN peak amplitude can also vary between subjects, and does so reliably in special populations such as those diagnosed with ADHD, who show shorter latencies.
Great tit Before and after social pairing and mating occurs, bird song is mainly dedicated to territorial defense. This behavior is a sexually selected trait because it ensures defense of the female who is rearing her offspring. There is also some evidence that vocal amplitude effects male-male competition in such species as the great tit. Most courtship songs were performed at relatively low amplitudes, whereas territorial songs or “broadcast songs” were performed at high amplitudes.
Pulsations driven by the \kappa-mechanism are coherent and have relatively large amplitudes. It drives the pulsations in many of the longest-known variable stars, including the Cepheid and RR Lyrae variables.
Miguel Ángel Virasoro (; born 1940 in Argentina) is an Argentine physicist. The Shapiro–Virasoro model,Virasoro, M. (1969). "Alternative constructions of crossing-symmetric amplitudes with Regge behavior." Physical Review, 177(5), 2309–2311.
But, continuous erosion, from coastal action, humidity and rainfall, wind and thermal amplitudes, resulted in an interior relief forming a more gently appearing landscape, in comparison to the western areas of Ribeira Seca.
The effect is sometimes also known as the Fletcher-Gent effect, after the authors of the first study of the phenomenon (Fletcher & Gent 1953). The effect is observed under cyclic loading conditions with small strain amplitudes, and is manifest as a dependence of the viscoelastic storage modulus on the amplitude of the applied strain. Above approximately 0.1% strain amplitude, the storage modulus decreases rapidly with increasing amplitude. At sufficiently large strain amplitudes (roughly 20%), the storage modulus approaches a lower bound.
Köppen climate map of La Pampa Being located in the Pampas, the province has a cool temperate climate. In general, the province is dominated by two different types of climates: a temperate one in the east and a semi-arid one in the west. Precipitation generally decreases from east to west and from north to south. Being characterized by large thermal amplitudes, the climate of the province has continental characteristics, particularly in the west where thermal amplitudes are much larger.
In this proposed S-matrix theory, there are no local quantities at all. Heisenberg proposed to use unitarity to determine the S-matrix. In all conceivable situations, the sum of the squares of the amplitudes must equal 1. This property can determine the amplitude in a quantum field theory order by order in a perturbation series once the basic interactions are given, and in many quantum field theories the amplitudes grow too fast at high energies to make a unitary S-matrix.
In a random process, the amplitude can not be described as a function of time, because of its probabilistic nature. However, certain statistical properties can be extracted from a signal sample, representing a realization of a random process, provided the latter is ergodic. An important characteristics for the field of vibration fatigue is the amplitude probability density function, that describes the statistical distribution of peak amplitudes. Ideally, the probability of cycle amplitudes, describing the load severity, could then be deduced directly.
With Goebel, he obtained the many-particle generalization of the Veneziano amplitude. In work with Keiji Kikkawa, M. A. Virasoro and others, he addressed the problem of unitarity of the dual amplitudes, setting up the formalism of dual diagrams, analogous to Feynman diagrams, for the computation of loop amplitudes. In work done with C.S. Hsue, M. A. Virasoro and notably with Jean-Loup Gervais, Sakita developed the functional formalism for these calculations in which summation over Riemann surfaces naturally emerged.
Chapman, S., and R.S. Lindzen, "Atmospheric Tides", Kluwer Dordrecht, 1970 Within the thermosphere, however, it becomes the predominant mode, reaching temperature amplitudes at the exosphere of at least 140 K and horizontal winds of the order of 100 m/s and more increasing with geomagnetic activity.Kohl, H. and J.W. King, J. Atm. Terr. Phys., 29,1045, 1967 The largest solar semidiurnal wave is mode (2, 2) with maximum pressure amplitudes near the ground of 120 hPa. It is an internal class 1 wave.
"Barbell Horn Ultrasonic Technology", Industrial Sonomechanics website, 2011 In high-power industrial ultrasonic liquid processors,"Ultrasonic Liquid Processor Systems", Industrial Sonomechanics website, 2011 such as commercial sonochemical reactors, ultrasonic homogenizers and ultrasonic milling systems intended for the treatment of large volumes of liquids at high ultrasonic amplitudes (ultrasonic mixing, production of nanoemulsions, solid particle dispersing, ultrasonic nanocrystallization, etc.), the preferred ultrasonic horn type is the Barbell horn. Barbell horns are able to amplify ultrasonic amplitudes while retaining large output diameters and radiating areas. It is, therefore, possible to directly reproduce laboratory optimization studies in a commercial production environment by switching from Converging to Barbell horns while maintaining high ultrasonic amplitudes. If correctly scaled up, the processes generate the same reproducible results on the plant floor as they do in the laboratory.
Gamma Doradus (γ Dor) variables are non-radially pulsating main- sequence stars of spectral classes F to late A. Their periods are around one day and their amplitudes typically of the order of 0.1 magnitudes.
In practical calculations, such as those needed for scattering amplitudes in various collider experiments, the operator product expansion is used in QCD sum rules to combine results from both perturbative and non-perturbative (condensate) calculations.
A post-stack attribute that computes the maximum value of the absolute value of the amplitudes within a window. This can be used to map the strongest direct hydrocarbon indicator within a zone of interest.
This model turned out to be the low energy limit of the heterotic superstring.Green, Michael B., John H. Schwarz, and Edward Witten. Superstring theory: volume 2, loop amplitudes, anomalies and phenomenology. Cambridge university press, 2012.
For amplitudes up to 15 or 20°, the velocity of a saccade linearly depends on the amplitude (the so-called saccadic main sequence, a term borrowed from astrophysics; see Figure). For amplitudes larger than 20°, the peak velocity starts to plateau (nonlinearly) toward the maximum velocity attainable by the eye at around 60°. For instance, a 10° amplitude is associated with a velocity of 300°/s, and 30° is associated with 500°/s."Sensory Reception: Human Vision: Structure and function of the Human Eye" vol.
Some red giants are large amplitude variables. Many of the earliest known variable stars are Mira variables with regular periods and amplitudes of several magnitudes, semiregular variables with less obvious periods or multiple periods and slightly lower amplitudes, and slow irregular variables with no obvious period. These have long been considered to be asymptotic giant branch (AGB) stars or supergiants and the red giant branch (RGB) stars themselves were not generally considered to be variable. A few apparent exceptions were considered to be low luminosity AGB stars.
The values taken by \beta depend on the mathematical space over which the random field varies. Thus, real-valued random fields take values on a simplex: this is the geometrical way of saying that the sum of probabilities must total to one. For quantum mechanics, the random variables range over complex projective space (or complex-valued projective Hilbert space), where the random variables are interpreted as probability amplitudes. The emphasis here is on the word projective, as the amplitudes are still normalized to one.
Schumann resonance amplitude records show significant diurnal and seasonal variations which in general coincide in time with the times of the day-night transition (the terminator). This time-matching seems to support the suggestion of a significant influence of the day-night ionosphere asymmetry on Schumann resonance amplitudes. There are records showing almost clock-like accuracy of the diurnal amplitude changes. On the other hand, there are numerous days when Schumann resonance amplitudes do not increase at sunrise or do not decrease at sunset.
There are two relevant parameters for diffracted waves: amplitude and phase. In typical microscopy using lenses there is no phase problem, as phase information is retained when waves are refracted. When a diffraction pattern is collected, the data is described in terms of absolute counts of photons or electrons, a measurement which describes amplitudes but loses phase information. This results in an ill-posed inverse problem as any phase could be assigned to the amplitudes prior to an inverse Fourier transform to real space.
Together with Ruth Britto, Bo Feng and Edward Witten, he introduced the recursion relations for the computation of scattering amplitudes, which opened a new window for computations required at particle accelerators, such as the Large Hadron Collider. With Nima Arkani-Hamed and collaborators, he studied N = 4 supersymmetric Yang–Mills theory and showed how to compute amplitudes at any order in the perturbation theory. He co- discovered a new formalism unifying gauge theory and gravity in any space-time dimension, known as the Cachazo-He-Yuan formulation.
A post-stack attribute that computes the arithmetic mean of the amplitudes of a trace within a specified window. This can be used to observe the trace bias which could indicate the presence of a bright spot.
Winters tend to be cold in the city, though by Russian standards, Astrakhan features relatively balmy winters. Summers in the city can be hot, with high temperatures in excess of . The mean annual temperature amplitude (difference between the mean monthly temperatures of the hottest and coldest months) is thus equal to ( in July and in January), so the climate is truly continental (amplitudes superior or equal to determines continental climates, while in semi-continental climates amplitudes vary between and ). Spring and fall are basically transitional seasons between summer and winter.
Further observations can determine whether 's orbit is actually within the dynamically stable or within the unstable part. The stability is strongly dependent on semi-major axis, with a≥30.30 AU being far less stable, but only very weakly dependent on the other orbital parameters. This is because those with larger semi-major axes have larger libration amplitudes, with amplitudes ~70° and above being destabilized by secondary resonances between the trojan motion and the dynamics of at least Saturn, Uranus, and Neptune. Secular resonances were found not to contribute to the dynamical stability of .
External sources by some resonant mechanism usually excite waves with frequencies and wavelengths in some narrow interval. For example, shaking a container with frequency ω excites surface waves with frequency ω/2 (parametric resonance, discovered by Michael Faraday). When wave amplitudes are small – which usually means that the wave is far from breaking – only those waves exist that are directly excited by an external source. When, however, wave amplitudes are not very small (for surface waves: when the fluid surface is inclined by more than few degrees) waves with different frequencies start to interact.
The same study also used older and younger groups of individuals with Parkinson's disease, and found that age itself did not have an effect on amplitude. Other studies have shown that individuals with schizophrenia have a marked reduction in P3b amplitude, suggesting impairments in working memory or other processing. Substance use has also been shown to affect P3b. Some studies show that alcoholics have larger P300 amplitudes in response to an auditory oddball task, but that alcoholics who have many alcoholic relatives have lower P300 amplitudes when compared to controls.
In 1954 in Chicago, Oehme studied the analytic properties of forward Scattering amplitudes in quantum field theories. He found that particle-particle and antiparticle- particle amplitudes are connected by analytic continuation in the complex energy plane. These results led to the paper by him with Marvin L. Goldberger and Hironari Miyazawa on the dispersion relations for pion-nucleon scattering, which also contains the Goldberger-Miyazawa-Oehme Sum Rule. M. L. Goldberger, H. Miyazawa, and R. Oehme , Phys. Rev. 99, 986 - 988 (1955) "Application of Dispersion Relations to Pion-Nucleon Scattering".
The covariant, or "spin foam", version of the dynamics was developed jointly over several decades by research groups in France, Canada, UK, Poland, and Germany. It was completed in 2008, leading to the definition of a family of transition amplitudes, which in the classical limit can be shown to be related to a family of truncations of general relativity. The finiteness of these amplitudes was proven in 2011. It requires the existence of a positive cosmological constant, which is consistent with observed acceleration in the expansion of the Universe.
Chirality of a massive particle is not a constant of motion; helicity is, but the chirality operator does not share eigenstates with the helicity operator. Free neutrinos propagate as mixtures of left- and right-handed helicity states, with mixing amplitudes on the order of . This does not significantly affect the experiments, because neutrinos involved are nearly always ultrarelativistic, and thus mixing amplitudes are vanishingly small. Effectively, they travel so quickly and time passes so slowly in their rest- frames that they do not have enough time to change over any observable path.
The model was not included with the original path-integral article because a suitable generalization to a four-dimensional spacetime had not been found. R. P. Feynman, The Development of the Space-Time View of Quantum Electrodynamics, Science, 153, pp. 699–708, 1966 (Reprint of the Nobel Prize lecture). One of the first connections between the amplitudes prescribed by Feynman for the Dirac particle in 1+1 dimensions, and the standard interpretation of amplitudes in terms of the kernel, or propagator, was established by Jayant Narlikar in a detailed analysis.
The amplitude, or the size, of the N1 is measured by taking the average voltage within the window that typically encompasses the N1 (about 150 to 200 ms post-stimulus). Because the N1 is a negative-going component, "larger" amplitudes correspond to being more negative, whereas "smaller" amplitudes correspond to being less negative. Research has suggested that the amplitude of N1 is affected by certain visual parameters, including stimulus angularity and luminance, both of which are directly related to the size of N1.Ito, M., Sugata, T., Kuwabara, H., Wu, C., & Kojima, K. (1999).
Freddy Alexander Cachazo is a Venezuelan-born theoretical physicist who holds the Gluskin Sheff Freeman Dyson Chair in Theoretical Physics at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada. He is known for the contributions to quantum field theory through the study of scattering amplitudes, in particular in quantum chromodynamics, N = 4 supersymmetric Yang–Mills theory and quantum gravity. His contributions include BCFW recursion relations, the CSW vertex expansion and the amplituhedron. In 2014, Cachazo was awarded the New Horizons Prize for uncovering numerous structures underlying scattering amplitudes in gauge theories and gravity.
They even have their own sub-classes, SRC and LC for slow semi-regular and slow irregular supergiant variables respectively. Variations are typically slow and of small amplitude, but amplitudes up to four magnitudes are known. Statistical analysis of many known variable red supergiants shows a number of likely causes for variation: just a few stars show large amplitudes and strong noise indicating variability at many frequencies, thought to indicate powerful stellar winds that occur towards the end of the life of a red supergiant; more common are simultaneous radial mode variations over a few hundred days and probably non-radial mode variations over a few thousand days; only a few stars appear to be truly irregular, with small amplitudes, likely due to photospheric granulation. Red supergiant photospheres contain a relatively small number of very large convection cells compared to stars like the Sun.
The probability for a photon to be in a particular polarization state depends on the probability distribution over the fields as calculated by the classical Maxwell's equations (in the Glauber-Sudarshan P-representation of a one-photon Fock state.) The expectation value of the photon number in a coherent state in a limited region of space is quadratic in the fields. In quantum mechanics, by analogy, the state or probability amplitude of a single particle contains the basic probability information. In general, the rules for combining probability amplitudes look very much like the classical rules for composition of probabilities: (The following quote is from Baym, Chapter 1) > # The probability amplitude for two successive probabilities is the product > of amplitudes for the individual possibilities. ... # The amplitude for a > process that can take place in one of several indistinguishable ways is the > sum of amplitudes for each of the individual ways.
This changes moment of inertia of the swing and hence the resonance frequency, and children can quickly reach large amplitudes provided that they have some amplitude to start with (e.g., get a push). Standing and squatting at rest, however, leads nowhere.
Rev, 123, (1961), p. 1053 he is interested in the amplitude of high-energy scattering. He proves that Froissart's result for fixed-angle scattering can be improved.A.Martine, T.Kinoshita et J.J. Loeffel, « A new upper bound for fixed angle scattering amplitudes », Phys.
The different detected speeds are represented in color for ease of interpretation, for example leaky heart valves: the leak shows up as a flash of unique color. Colors may alternatively be used to represent the amplitudes of the received echoes.
These stars of spectral type A or occasionally F0, a sub- class of δ Scuti variables found on the main sequence. They have extremely rapid variations with periods of a few minutes and amplitudes of a few thousandths of a magnitude.
Their amplitudes depend on the energy of the shock pulses. The transients are converted into analogue electric pulses. The last frame shows the converted shock pulse signal from the bearing, now consisting of a rapid sequence of stronger electric pulses.
In the Toda oscillator model of self-pulsation, the logarithm of amplitude varies exponentially with time (for large amplitudes), thus the amplitude varies as doubly exponential function of time.. Dendritic macromolecules have been observed to grow in a doubly-exponential fashion.
Circumference of the index finger appears to be negatively associated with conduction amplitudes in the Median and Ulnar nerves. In addition, people with larger wrist ratios (anterior-posterior diameter : medial-lateral diameter) have lower Median nerve latencies and faster conduction velocities.
Aminergic neurons are neurons that use monoamines as a neurotransmitter. This class of neurotransmitters is what keeps PGO wave amplitudes at very low levels during periods of a mammal being awake. The three specific aminergic neurotransmitters are serotonin, dopamine and norepinephrine.
Authors of this study also suggest contribution from the thalamocortical pathways to the fast oscillations. Interestingly, higher HFO amplitudes (between 400–800 Hz) after nerve stimulation were also reported in the EEG signal of healthy football and racquet sports players.
This technique is the most widespread method of computing amplitudes in quantum field theory today. Since this picture was first developed by Stueckelberg,Stueckelberg, Ernst (1941), "La signification du temps propre en mécanique ondulatoire." Helv. Phys. Acta 14, pp. 322–323.
His proof remains valid in gauge theories with confinement.Reinhard Oehme, Talk given at 11th International Conference on Mathematical Physics, Paris, France, 18-23 Jul 1994 , Int. J. Mod. Phys. A10:1995-2014,1995. “Analytic structure of amplitudes in gauge theories with confinement”.
J. Narlikar, Path Amplitudes for Dirac particles, Journal of the Indian Mathematical Society, 36, pp. 9–32, 1972. The name "Feynman chessboard model" was coined by Gersch when he demonstrated its relationship to the one-dimensional Ising model. Gaveau et al.
However, the low metacentric height of the vessels, only , results in large roll amplitudes and pitching, making the pushers very uncomfortable in severe weather. For this reason short transit journeys without a barge are done only when it is absolutely necessary.
Journal of the Optical Society of America A, 29, 163-172. and on amplitudes of evoked potentials in humansIzmailov Ch. A., Sokolov E. N. (2004). Subjective and objective scaling of large color differences. In C. Kaernbach, E. Schröger, H. Müller (Eds.).
Studies in the late 20th century began to show that all giants of class M were variable with amplitudes of 10 milli-magnitudes of more, and that late K class giants were also likely to be variable with smaller amplitudes. Such variable stars were amongst the more luminous red giants, close to the tip of the RGB, but it was difficult to argue that they were all actually AGB stars. The stars showed a period amplitude relationship with larger amplitude variables pulsating more slowly. Microlensing surveys in the 21st century have provided extremely accurate photometry of thousands of stars over many years.
Intuitively it is clear that eigenstates with heavier "weights" are more "likely" to be produced. Indeed, which of the above eigenstates the system jumps to is given by a probabilistic law: the probability of the system jumping to the state is proportional to the absolute value of the corresponding numerical weight squared. These numerical weights are called probability amplitudes, and this relationship used to calculate probabilities from given pure quantum states (such as wave functions) is called the Born rule. Clearly, the sum of the probabilities, which equals the sum of the absolute squares of the probability amplitudes, must equal 1.
These two properties are very general and occur for oscillatory systems in many other fields such as population dynamics, oceanography, plasma physics, etc. The weak nonlinearity and the long time scale of the amplitude variation allows the temporal description of the pulsating system to be simplified to that of only the pulsation amplitudes, thus eliminating motion on the short time scale of the period. The result is a description of the system in terms of amplitude equations that are truncated to low powers of the amplitudes. Such amplitude equations have been derived by a variety of techniques, e.g.
Cabibbo's idea originated from a need to explain two observed phenomena: #the transitions u ↔ d, e ↔ νe, and μ ↔ νμ had similar amplitudes. #the transitions with change in strangeness ΔS = 1 had amplitudes equal to 1/4 of those with ΔS = 0\. Cabibbo's solution consisted of postulating weak universality to resolve the first issue, along with a mixing angle θc, now called the Cabibbo angle, between the d and s quarks to resolve the second. For two generations of quarks, there are no CP violating phases, as shown by the counting of the previous section.
Further studies have subsequently examined the P2 separately from the N1 and have found that the amplitude of the P2 itself is larger for target stimuli that are less frequent. This is similar to the P3, though the P2 is usually seen for more simple features than the P3.Crowley, K. E., & Colrain, I. M. (2004) In the auditory domain, there is evidence of enhanced P2 amplitudes even when a target stimuli is not embedded in a series of identical stimuli. In these instances, enhanced P2 amplitudes have been associated with auditory learning and repeated stimulus exposure.
The hair cell ribbon synapse experiences spontaneous activity in the absence of stimuli, under conditions of a constant hair cell membrane potential. Voltage clamp at the postsynaptic bouton showed that the bouton experiences a wide range of excitatory postsynaptic current amplitudes. The current amplitude distribution is a positive-skew, with a range of larger amplitudes for both spontaneous and stimulus evoked release. It was thought that this current distribution was not explainable with single vesicle release, and other scenarios of release have been proposed: coordinated multivesicular release, kiss-and-run, or compound fusion of vesicles prior to exocytosis.
In the month prior to the 1989 Loma Prieta earthquake measurements of the earth's magnetic field at ultra-low frequencies by a magnetometer in Corralitos, California, just 7 km from the epicenter of the impending earthquake, started showing anomalous increases in amplitude. Just three hours before the quake the measurements soared to about thirty times greater than normal, with amplitudes tapering off after the quake. Such amplitudes had not been seen in two years of operation, nor in a similar instrument located 54 km away. To many people such apparent locality in time and space suggested an association with the earthquake.
MSZ96 is a quantum key distribution protocol which allows a cryptographic key bit to be encoded using four nonorthogonal quantum states described by non- commuting quadrature phase amplitudes of a weak optical field, without photon polarization (BB84 protocol) or entangled photons (E91 protocol).
These symbiotic binary systems are composed of a red giant and a hot blue star enveloped in a cloud of gas and dust. They undergo nova-like outbursts with amplitudes of up to 4 magnitudes. The prototype for this class is Z Andromedae.
Complex movements cause greater amplitudes of the BP, which reflects the fact that there is greater activation of the SMA. Further experiments also suggest that the bilateral sensorimotor cortices play a role in the preparation of complex movements, along with the SMA.
A post-stack attribute that computes the sum of the squared amplitudes divided by the number of samples within the specified window used. This provides a measure of reflectivity and allows one to map direct hydrocarbon indicators within a zone of interest.
Temperature amplitudes vary significantly in different areas. The lowest recorded temperature is , while the highest is . Precipitation averages about per year, and varies from in Dobrudja to more than in the mountains. Continental air masses bring significant amounts of snowfall during winter.
Slowness estimation is a matter of forming beams with different slowness vectors and comparing the amplitudes or the power of the beams, and finding out the best beam by looking for the vapp and backazimuth combination with the highest energy on the beam.
Izmailov Ch. A., Sokolov E. N., Korshunova S. G. (2005). Multidimensional scaling of schematically represented faces based on dissimilarity estimates and evoked potentials of differences amplitudes. Spanish Journal of Psychology, 8, 119-133.Izmailov Ch. A., Korshunova S. G., Sokolov E. N. (2008).
As the strength of the muscle contraction is increased, more and more muscle fibers produce action potentials. When the muscle is fully contracted, there should appear a disorderly group of action potentials of varying rates and amplitudes (a complete recruitment and interference pattern).
Moreover, the missing amplitudes which plague the CSW approach turn out to be recovered within the MHV Lagrangian framework via evasions of the S-matrix equivalence theorem. An alternative approach to the MHV Lagrangian recovers the missing pieces mentioned above by using Lorentz-violating counterterms.
A second, subsequent observation of no longer certainly produces the eigenvalue corresponding to the starting state. In other words, the probability amplitudes for the second measurement of depend on whether it comes before or after a measurement of , and the two observables do not commute.
Thus, even waves from extreme systems like merging binary black holes die out to very small amplitudes by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as h ≈ 10−20, but generally no bigger.
Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA. 2003. Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neuroscience and Behavioral Physiology. 33:247–254. Increased stimulation amplitude resulted in increased EMG amplitudes and an increased frequency of rhythmic activity.
Research has shown that P3b amplitudes are systematically larger over the right frontal and central hemispheres than the left, though there is some debate as to whether this is due to structural causes (such as skull thickness or cranial irregularities) or to cognitive causes.
Additive synthesis aims to exploit this property of sound in order to construct timbre from the ground up. By adding together pure frequencies (sine waves) of varying frequencies and amplitudes, we can precisely define the timbre of the sound that we want to create.
In these models, there are non-zero transition amplitudes between two different topologies, or in other words, the topology changes. This and other similar results lead physicists to believe that any consistent quantum theory of gravity should include topology change as a dynamical process.
Because of this resonant character, the birefringence of the optical element can be modulated to large amplitudes, but also by the same reason, the operation of a PEM is limited to a single frequency, and most commercial devices manufactured today operate at about 50 kHz.
It is the most widely used measure of orbital wobble in astronomy and the measurement of small radial velocity semi-amplitudes of nearby stars is important in the search for exoplanets (see Doppler spectroscopy).Goldvais, Uriel A. Exoplanets, pp. 2–3. Retrieved 2008-08-22.
Thanks to CoRoT they were also detected in the solar-like star HD 49933 and also in the red giant star HD 181907. In both cases the location of the helium ionization zone could be accurately derived. # Amplitudes and line widths in solar-like oscillation spectra: One of the major successes of the CoRoT space mission has definitely been the detection of solar-like oscillations in stars slightly hotter than the Sun. As was previously done for the Sun, measurements of amplitudes and line widths in their frequency spectra resulted in new constraints in the modeling of stochastic excitations of acoustic modes by turbulent convection.
At ground level, atmospheric tides can be detected as regular but small oscillations in surface pressure with periods of 24 and 12 hours. However, at greater heights, the amplitudes of the tides can become very large. In the mesosphere (heights of ~ 50-100 km) atmospheric tides can reach amplitudes of more than 50 m/s and are often the most significant part of the motion of the atmosphere. The reason for this dramatic growth in amplitude from tiny fluctuations near the ground to oscillations that dominate the motion of the mesosphere lies in the fact that the density of the atmosphere decreases with increasing height.
Non-giant escape circuitry was found to be activated more during frontal attacks, but was rarely involved in the initial escape during a rear attack. Non-giant escape is often used after an initial giant interneuron-mediated tail flip. Compared to MG escape, the potentials produced in the MoG neurons by non-giant circuitry have lower amplitudes and longer durations while the recordings in the FF muscles are more erratic and have smaller amplitudes since they receive smaller EPSPs from the MoGs. So while it is hard to observe differences in MG and non-escapes, this property can be used to distinguish the two.
Consistent with this historical separation of the two components, typically if a stimulus is a rare non-target then the recorded EEG waveform has characteristics associated with the P3a, whereas attended targets elicit a P3b. With now-extensive research, it is also possible to dissociate these components even when the experimental context is different and/or less well- studied. P3a amplitudes tend to be maximal over frontal/central sites on the scalp, such as FCz/Cz in the international 10-20 system, which is the standard electrode placement system of many ERP labs around the world. P3b amplitudes are generally greater at sites like Pz. Latency is another distinguishing characteristic.
While the words analog audio usually imply that the sound is described using a continuous time/continuous amplitudes approach in both the media and the reproduction/recording systems, and the words digital audio imply a discrete time/discrete amplitudes approach, there are methods of encoding audio that fall somewhere between the two, e.g. continuous time/discrete levels and discrete time/continuous levels. While not as common as "pure analog" or "pure digital" methods, these situations do occur in practice. Indeed, all analog systems show discrete (quantized) behaviour at the microscopic scale, and asynchronously operated class-D amplifiers even consciously incorporate continuous time, discrete amplitude designs.
To study the quantum case, consider the following situation: a particle incident on the barrier from the left side A→. It may be reflected (A←) or transmitted (B→). Here and in the following assume E > V0. To find the amplitudes for reflection and transmission for incidence from the left, we set in the above equations A→ = 1 (incoming particle), A← = (reflection), B← = 0 (no incoming particle from the right) and B→ = (transmission The transmission coefficient is defined as the ratio of the transmitted probability current to the incoming probability current. However, the quantities directly envolved in this potential step problem are called scattering amplitudes S_{ij}.
But if the frequencies are too similar, leakage can render them unresolvable even when the sinusoids are of equal strength. Windows that are effective against the first type of interference, namely where components have dissimilar frequencies and amplitudes, are called high dynamic range. Conversely, windows that can distinguish components with similar frequencies and amplitudes are called high resolution. The rectangular window is an example of a window that is high resolution but low dynamic range, meaning it is good for distinguishing components of similar amplitude even when the frequencies are also close, but poor at distinguishing components of different amplitude even when the frequencies are far away.
Offsets are specified for four consecutive of the 32 bands, because in flat areas which are prone to banding artifacts, sample amplitudes tend to be clustered in a small range. The SAO filter was designed to increase picture quality, reduce banding artifacts, and reduce ringing artifacts.
The town has a humid continental climate with large temperature amplitudes, similar to that of Sofia. The lowest temperature in Bulgaria was recorded in Tran in January 1947. With temperatures frequently dropping to - through the winter, Tran can be considered one of the coldest towns in Bulgaria.
599–601Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010. This is in contrast to receptor potentials, whose amplitudes are dependent on the intensity of a stimulus. In both cases, the frequency of action potentials is correlated with the intensity of a stimulus.
Heppner, J.P., in Dyer, E.R. (ed), "Critical Problems of Magnetospheric Physics", Nat. Acad. Sci.,Washington, D.C., p. 107. 1972 These geomagnetic variations belong to the so-called external part of the geomagnetic field. Their amplitudes reach at most about 1% of the main internal geomagnetic field Bo.
A related phenomenon is dithering applied to analog signals before analog-to-digital conversion. Stochastic resonance can be used to measure transmittance amplitudes below an instrument's detection limit. If Gaussian noise is added to a subthreshold (i.e., immeasurable) signal, then it can be brought into a detectable region.
As each vector can be characterized by its norm and phase, variations in the M^2 amplitudes can modify the respective M^2 gradient pattern. The original concept of GPA was introduced by Rosa, Sharma and Valdivia in 1999.Rosa, R.R.; Sharma, A.S.and Valdivia, J.A. Int. J. Mod. Phys.
This is a way to extract physical information from the theory. Claims to have reproduced the correct behaviour for graviton scattering amplitudes and to have recovered classical gravity have been made. "We have calculated Newton's law starting from a world with no space and no time." – Carlo Rovelli.
In 2002 and 2019, southern-hemisphere major warmings were observed. These events are not fully understood. At an initial time a blocking-type circulation pattern establishes in the troposphere. This blocking pattern causes Rossby waves with zonal wavenumber 1 and/or 2 to grow to unusually large amplitudes.
This is followed by longer fixations and shorter saccades in the latter phases of scene viewing, representing focal processing (Pannasch et al., 2008). Eye movement behaviour in scene viewing differs between different levels of cognitive development. Fixation durations shorten and saccade amplitudes lengthen with the increase in age.
In stars with surface convection zones, turbulent fluids motions near the surface simultaneously excite and damp oscillations across a broad range of frequency. Because the modes are intrinsically stable, they have low amplitudes and are relatively short-lived. This is the driving mechanism in all solar-like oscillators.
This type can be divided into two subtypes. Stylolites of subtype A are characterized by higher amplitudes. They are related to the bedding either horizontally, or at a small angle. Stylolites of subtype B usually appear in rocks which have been affected by tectonic and/or metamorphic activity.
Example of a penguin diagram superimposed on an image of a Gentoo penguin In quantum field theory, penguin diagrams are a class of Feynman diagrams which are important for understanding CP violating processes in the standard model. They refer to one-loop processes in which a quark temporarily changes flavor (via a W or Z loop), and the flavor-changed quark engages in some tree interaction, typically a strong one. For the interactions where some quark flavors (e.g. very heavy ones) have much higher interaction amplitudes than others, such as CP-violating or Higgs interactions, these penguin processes may have amplitudes comparable to or even greater than those of the direct tree processes.
For stronger signal amplitudes that stimulated the interneurons in the presence of no noise, however, the addition of noise always decreased the mutual information transfer demonstrating that stochastic resonance only works in the presence of low-intensity signals. The information carried in each spike at different levels of input noise was also calculated. At the optimum level of noise, the cells were more likely to spike, resulting in spikes with more information and more precise temporal coherence with the stimulus. Stochastic resonance is a possible cause of escape behavior in crickets to attacks from predators that cause pressure waves in the tested frequency range at very low amplitudes, like the wasp Liris niger.
Mandelstam, along with Tullio Regge, did the initial development of the Regge theory of strong interaction phenomenology. He reinterpreted the analytic growth rate of the scattering amplitude as a function of the cosine of the scattering angle as the power law for the falloff of scattering amplitudes at high energy. Along with the double dispersion relations, Regge theory allowed theorists to find sufficient analytic constraints on scattering amplitudes of bound states to formulate a theory in which there are infinitely many particle types, none of which are fundamental. After Veneziano constructed the first tree-level scattering amplitude describing infinitely many particle types, what was recognized almost immediately as a string scattering amplitude, Mandelstam continued to make crucial contributions.
He interpreted the Virasoro algebra discovered in consistency conditions as a geometrical symmetry of a world- sheet conformal field theory, formulating string theory in terms of two dimensional quantum field theory. He used the conformal invariance to calculate tree level string amplitudes on many worldsheet domains. Mandelstam was the first to explicitly construct the fermion scattering amplitudes in the Ramond and Neveu–Schwarz sectors of superstring theory, and later gave arguments for the finiteness of string perturbation theory. In quantum field theory, Mandelstam and independently Sidney Coleman extended work of Tony Skyrme to show that the two dimensional quantum Sine-Gordon model is equivalently described by a Thirring model whose fermions are the kinks.
This is followed by longer fixations and shorter saccades in the latter phases of scene viewing processing. It has also been found that eye movement behaviour in scene viewing differs with levels of cognitive development - fixation durations are thought to shorten and saccade amplitudes lengthen with an increase in age.
He also details technical failures of the transient analysis in the Exponent report, which did not show a slower rate of warming for wet balls. Leonard also argues that the Exponent report contains incorrect "amplitudes" in some graphs which underrepresented the total warming of both the Colts' and Patriots' balls.
Methods for quantization are covered in the article on quantization. The main point to quantization is to be able to compute quantum amplitudes for various processes allowed by the theory. Technically, they reduce to the computations of certain correlation functions in the vacuum state. This involves a renormalization of the theory.
She uses the spinor helicity formalism. Her work was turned into the first comprehensive textbook on quantum amplitudes, published by Cambridge University Press in 2015. She studies the implications of standard symmetries on ultraviolet divergence in supergravity. She uses the soft bootstrap to constrain effective field theories of massless particles.
An undated marginal note indicates that the two coupled prisms were later replaced by a single "parallelepiped in glass"—now known as a Fresnel rhomb. This was the memoir whose "supplement", dated January 1818, contained the method of superposing sinusoidal functions and the restatement of Malus's law in terms of amplitudes.
In 1919, Karl Bernhard Zoeppritz derived four equations that determine the amplitudes of reflected and refracted waves at a planar interface for an incident P-wave as a function of the angle of incidence and six independent elastic parameters.Sheriff, R. E., Geldart, L. P., (1995), 2nd Edition. Exploration Seismology. Cambridge University Press.
The easterly tidal flood attains a rate of , and the westerly tidal ebb can stream at up to . Two shoals obstruct Marcus Passage, the first extends from De Horsey Passage to Base Sand, the second extends from De Horsey Island to Kennedy Island. Sand waves with amplitudes of are known on these shoals.
The prototype of this rare class is V361 Hydrae, a 15th magnitude subdwarf B star. They pulsate with periods of a few minutes and may simultaneous pulsate with multiple periods. They have amplitudes of a few hundredths of a magnitude and are given the GCVS acronym RPHS. They are p-mode pulsators.
They also have relatively high space velocity and low luminosities for stars of their stellar classification. These properties distinguish the SX Phoenicis variables from their cousins, the Delta Scuti variables. The latter have longer periods, strong metallicity and large amplitudes. SX Phoenicis variables are found primarily in globular clusters and galactic halos.
Its usage mainly being in the near-surface surveys is associated with the smaller amplitudes generated and hence smaller penetration depths compared to vibratory and explosive sources. As in the case of explosive sources, weight drop sources also utilize an unknown source wavelet which offers difficulty in optimal vertical stacking and deconvolution.
Spacetime and the familiar physical fields emerge as consequences of this description. But twistor space is chiral (handed) with left- and right-handed objects treated differently. For example, the graviton for gravity and the gluon for the strong force are both right- handed.Twistor theory and Scattering Amplitudes, University of Oxford Mathematical Group.
Step 2. Compute forces using Hellmann-Feynman theorem, and integrate the equations of motion by time step \Delta t to obtain the classical phase space at time t+\Delta t. Step 3. Integrate the Schrödinger equation to evolve quantum amplitudes from time t to t+\Delta t in increments of \delta t.
Design and Fabrication of Micromachined Resonators. arXiv preprint . Responsivity (which contributes to resolution) describes the size of the oscillation we can get from devices with same external condition. If we apply the same current and B field to several resonators, devices that show larger vibration amplitudes are said to have a higher responsivity.
The output of a wind wave model is a description of the wave spectra, with amplitudes associated with each frequency and propagation direction. Results are typically summarized by the significant wave height, which is the average height of the one-third largest waves, and the period and propagation direction of the dominant wave.
J. Neurophysiol. 28, 599-620. Burke later demonstrated that there was a graded decrease of both EPSP and inhibitory post synaptic potential (IPSP) amplitudes from small to large motoneurons.Burke RE, Rymer WZ & Walsh JR. Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius.
Several studies, using a variety of paradigms, have found that emotional stimuli are influential in capturing attention. For example, in one study, both stimuli that were positively valenced (e.g., nude person of the opposite sex) and negatively valenced (e.g., snarling wolf) were shown to elicit greater N1 amplitudes than neutrally valenced (e.g.
This demonstrates the interesting impact that lakes have on the tsunami wave characteristics, as it is very different from ocean tsunami wave characteristics due to the ocean being deeper, and lakes being relatively shallow in comparison. With ocean tsunami waves amplitudes only increase when the tsunami gets close to shore, in lake tsunami waves are generated and stay in a shallow environment. This would have a major impact on the 34,000 permanent residences along the lake, not to mention the impact on tourism in the area. Tsunami run-ups would leave areas near the lake inundated due to permanent ground subsidence attributed to the earthquake, with the highest run-ups and amplitudes being attributed to the seiches rather than the actual tsunami.
The temperature, humidity, and wind on aeroclimatic maps may apply either to standard altitudes or to the main isobaric surfaces. Isolines are drawn on maps of such climatic features as the long-term mean values (of atmospheric pressure, temperature, humidity, total precipitation, and so forth) to connect points with equal values of the feature in question—for example, isobars for pressure, isotherms for temperature, and isohyets for precipitation. Isoamplitudes are drawn on maps of amplitudes (for example, annual amplitudes of air temperature—that is, the differences between the mean temperatures of the warmest and coldest month). Isanomals are drawn on maps of anomalies (for example, deviations of the mean temperature of each place from the mean temperature of the entire latitudinal zone).
Volovich became Richard and Edna Salomon Assistant Professor at Brown University in 2006 after her post-doctoral research at the Kavli Institute for Theoretical Physics in Santa Barbara and William D. Loughlin Membership at the Institute for Advanced Study in Princeton. In 2011 she was promoted to an Associate Professor of Physics with tenure, and in 2016 to Professor of Physics. Volovich's research interests include scattering amplitudes in quantum field theory and gravity. The goal of this research program is to deepen our understanding of fundamental properties of gauge and gravity theories by discovering and exploring the hidden mathematical structures of scattering amplitudes and to use these novel structures as much as possible to aid practical calculations for experimentally relevant processes.
AAVSO V-band light curve of Betelgeuse (Alpha Orionis) from Dec 1988 to Aug 2002. Orion, with Betelgeuse at its usual magnitude (left) and during the unusually deep minimum in early 2020 (right) Betelgeuse is classified as a semiregular variable star, indicating that some periodicity is noticeable in the brightness changes, but amplitudes may vary, cycles may have different lengths, and there may be standstills or periods of irregularity. It is placed in subgroup SRc; these are pulsating red supergiants with amplitudes around one magnitude and periods from tens to hundreds of days. Betelgeuse typically shows only small brightness changes near to magnitude +0.5, although at its extremes it can become as bright as magnitude 0.0 or as faint as magnitude +1.6.
The chief advantage of digital broadcasts is that they prevent a number of complaints common to traditional analog broadcasts. For television, this includes the elimination of problems such as snowy pictures, ghosting and other distortion. These occur because of the nature of analog transmission, which means that perturbations due to noise will be evident in the final output. Digital transmission overcomes this problem because digital signals are reduced to discrete values upon reception and hence small perturbations do not affect the final output. In a simplified example, if a binary message 1011 was transmitted with signal amplitudes [1.0 0.0 1.0 1.0] and received with signal amplitudes [0.9 0.2 1.1 0.9] it would still decode to the binary message 1011— a perfect reproduction of what was sent.
The biggest simplification is perhaps in the fact that the "spinning" of the probability amplitude arrows is actually more accurately explained as a "spinning" of the source, as the probability amplitudes of photons do not "spin" while they are in transit. We obtain the same variation in probability amplitudes by letting the time at which the photon left the source be indeterminate—and the time of the path now tells us when the photon would have left the source, and thus what the angle of its "arrow" would be. However, this model and approximation is a reasonable one to illustrate a diffraction grating conceptually. Light of a different frequency may also reflect off of the same diffraction grating, but with a different final point.
Sägen von Rohren mit hartmetallbestückten Kreissägeblättern Further Amsaw developments lead to segment stabilizers, whereby on both sides of the blade adjustable plastic-coated plates minimized the blade vibrations (AME). Other manufacturers later used similar slide elements as “vibration dampeners”. These erroneously labeled vibration dampeners did not however dampen the oscillations, but merely minimized the amplitudes.
A computer simulation of a black hole Elvang joined the University of Michigan in 2009 where she works on supersymmetry. She worked on the 4-dimensional spacetime RG flows. She looks to understand quantum gravity and the gauge gravitation correspondence. Elvang described scattering amplitudes using basic quantum field theory, including Feynman rules and Yukawa theory.
The state of the system at any time t is given by the phase space of all the classical particles, the quantum amplitudes, and the adiabatic state. The simulation broadly consists of the following steps: Step 1. Initialize the state of the system. The classical positions and velocities are chosen based on the ensemble required.
In October 2006, a rotational lightcurve of Subbotina was obtained from photometric observations by Italian Silvano Casulli and French Laurent Bernasconi, both amateur astronomers. Lightcurve analysis gave a well-defined rotation period of hours with a brightness variation of in magnitude (). Somewhat higher amplitudes of 0.42 and 0.62 magnitude were found by the NEOWISE mission.
In fact, there should be a reciprocal relationship between the amplitudes of the P3b response elicited by the primary and secondary tasks, respectively. If the primary task is easier (i.e., requires less stimulus evaluation resources), participants have more resources left over to devote to the secondary task. Conversely, if the primary task is harder (i.e.
B. hortorum exhibit buzz pollination, a foraging behavior in which they generate vibrations that are transmitted onto the anthers of flowers, thus ejecting the pollen that they gather and then consume. In a study comparing other Bombus species, B. hortorum was found to create higher buzz amplitudes, thus making more efficient at collecting pollen.
This is because a pair of tones in unison come from different locations or can have different "colors" (timbres), i.e. come from different musical instruments or human voices. Voices with different colors have, as sound waves, different waveforms. These waveforms have the same fundamental frequency but differ in the amplitudes of their higher harmonics.
However, if including the accompanying amplitude compensation in the inverse Q filter, stability is a major issue of concern in implementation.”Wang 2008 p.64 Hale (1981)Hale, D, 1981 Q-adaptive deconvolution: SEP report 30. p.140 found that the inverse Q filter overcompensated the amplitudes for the later events in a seismic trace.
These neurons displayed a higher frequency and larger amplitudes of miniature excitatory postsynaptic potentials (mEPSP). Mice models with domain specific mutations led to neonatal hyperactivity of the hippocampal trisynaptic circuit. Mutations had the greatest impact during the first 3 weeks of development, and reversal of mutations in adults did not improve behavior and cognition.
Activity cycles 21, 22 and 23 seen in sunspot number index, TSI, 10.7cm radio flux, and flare index. The vertical scales for each quantity have been adjusted to permit overplotting on the same vertical axis as TSI. Temporal variations of all quantities are tightly locked in phase, but the degree of correlation in amplitudes is variable to some degree.
Microsaccades are a kind of fixational eye movement. They are small, jerk- like, involuntary eye movements, similar to miniature versions of voluntary saccades. They typically occur during prolonged visual fixation (of at least several seconds), not only in humans, but also in animals with foveal vision (primates, cats, dogs etc.). Microsaccade amplitudes vary from 2 to 120 arcminutes.
Orion variables are young, hot pre–main-sequence stars usually embedded in nebulosity. They have irregular periods with amplitudes of several magnitudes. A well-known subtype of Orion variables are the T Tauri variables. Variability of T Tauri stars is due to spots on the stellar surface and gas-dust clumps, orbiting in the circumstellar disks.
The Moloaʻa Stream empties into the north end of a beach which is backed by high cliffs. Uphill from the bay is the Moloaʻa State Forest Reserve. Moloaʻa Bay had one of the highest runups in Kauai during the April 1, 1946 tsunami from the 1946 Aleutian Islands earthquake. It experienced one of the highest wave amplitudes: .
Diagram showing the mode conversions that occur when a P-wave reflects off an interface at non-normal incidence In geophysics, Knott's equations were the first equations to describe the amplitudes of reflected and refracted waves generated at non-normal incidence upon an interface. Sheriff, R. E., Geldart, L. P., (1995), 2nd Edition. Exploration Seismology. Cambridge University Press.
At longer periods the bump can be seen on the ascending branch of the light curve (e.g. X Cygni), but for period longer than 20 days the resonance disappears. A minority of classical Cepheids show nearly symmetric sinusoidal light curves. These are referred to as s-Cepheids, usually have lower amplitudes, and commonly have short periods.
The trajectories are allowed to 'hop' between various adiabatic states at certain times such that the quantum amplitudes for the adiabatic states follow the time dependent Schrödinger equation. The probability of these hops are dependent on the coupling between the states, and is generally significant only in the regions where the difference between adiabatic energies is small.
It is conceptually useful to distinguish between sidelobes and grating lobes because grating lobes have larger amplitudes than most, if not all, of the other side lobes. The mathematics of grating lobes is the same as of X-ray diffraction. The animation shows the main lobe and grating lobes of a phased array in polar coordinate system.
Zuolin Chen, et al.(2005) introduced a multi-window algorithm to detect the first break. In this method, three moving windows were used and the averages of absolute amplitudes in each window need to be calculated, then ratios based on the averages of the windows provide standards to differentiate signals from unwanted noise. Wong et al.
Similarities between iceberg tremors, which occur when they run aground, and volcanic tremors may help experts develop a better method for predicting volcanic eruptions. Although icebergs have much simpler structures than volcanoes, they are physically easier to work with. The similarities between volcanic and iceberg tremors include long durations and amplitudes, as well as common shifts in frequencies.
Intended as practical navigation aids, they cost as little as £2.See also "Introduction", Tractatus de Globis, p. xxxi. The globes provided navigators and students with methods for finding the place of the sun, latitude, course, distance, amplitudes, azimuths, time and declination. They proved such a boon to navigation that they came into widespread use on ships.
This method is, in fact, a simple version of the discrete Fourier transform (DFT). The DFT takes an N-valued complex input and correlates it with N matched filters, corresponding to complex exponentials at N different frequencies, to yield N complex-valued numbers corresponding to the relative amplitudes and phases of the sinusoidal components (see Moving target indication).
This arrangement makes a physical analog of just one term in the tide equation. Old Brass Brains computes 37 such terms. The slotted yoke cranks at the top and bottom (with the triangular pieces) move vertically in a sinusoidal pattern. The locations of their pins determine their amplitudes and phases, representing factors in the tide equation.
Stimulus experience modifies auditory neuromagnetic responses in young and older listeners. Hearing Research, Feb;248(1–2):48–59 again suggesting some degree of independence of N1, and P2 latencies and amplitudes appear to be affected by old age.Tremblay et al. 2003 Effects of age and age-related hearing loss on the neural representation of speech cues.
The process of deriving the weights that describe a given function is a form of Fourier analysis. For functions on unbounded intervals, the analysis and synthesis analogies are Fourier transform and inverse transform. Function s(x) (in red) is a sum of six sine functions of different amplitudes and harmonically related frequencies. Their summation is called a Fourier series.
Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the Sun's height above the galactic plane and the Galaxy's local spiral structure. A group of classical Cepheids with small amplitudes and sinusoidal light curves are often separated out as Small Amplitude Cepheids or s-Cepheids, many of them pulsating in the first overtone.
If adding that detail only altered things slightly, then it would not have been too bad, but disaster struck when it was found that the simple correction mentioned above led to infinite probability amplitudes. In time this problem was "fixed" by the technique of renormalization. However, Feynman himself remained unhappy about it, calling it a "dippy process".
Dynamic mode of operation refers to measurements of the shifts in the resonance frequency. The cantilever is driven to its resonance frequency and frequency shifts are detected. Assuming small vibration amplitudes (which is generally true in MFM measurements), to a first-order approximation, the resonance frequency can be related to the natural frequency and the force gradient.
An easily implementable weighted stack method would be to weight the amplitudes of the single sites of an array with the SNR of the signal at this site before beamforming, but this does not directly exploit the coherency of the signals across the array. All weighted stack methods can increase the slowness resolution of velocity spectrum analysis.
One study showed, along with other ungulates, wildebeests responded more strongly to the baboon alarm calls compared to the baboon contest calls, though both types of calls had similar patterns, amplitudes, and durations. The alarm calls were a response of the baboons to lions, and the contest calls were recorded when a dispute between two males occurred.
Significant polarisation of the spectrum continuum is also seen, suggesting an asymmetric wind. This has not been observed in other WR stars. R99 shows brightness variations of about 0.3 magnitude over a period of decades, and smaller amplitudes with the strongest periods at two and ten days. The colour also varies, with the star being bluer at minimum light.
Sound data is grouped into frames of 256 samples. Each frame is converted into the frequency domain and the most significant (highest-amplitude) frequencies are identified. A number of frequency bands are selected for encoding; the rest are discarded. The bitstream for each frame then encodes which frequency bands are in use and what their amplitudes are.
The dual resonance model was based upon the observation that the amplitudes for the s-channel scatterings matched exactly with the amplitudes for the t-channel scatterings among mesons and also the Regge trajectory. It began with the Euler beta function model of Gabriele Veneziano in 1968 for a 4-particle amplitude which has the property that it is explicitly s–t crossing symmetric, exhibits duality between the description in terms of Regge poles or of resonances, and provides a closed-form solution to non-linear finite-energy sum rules relating s- and t- channels. The Veneziano formula was quickly generalized to an equally consistent N-particle amplitude for which Yoichiro Nambu,Nambu, Y. (1970). "Quark model and the factorization of the Veneziano amplitude." In R. Chand (ed.), Symmetries and quark models (pp. 269–277).
So, there is a higher probability that light will follow a near-classical reflection path than a path further out. However, a diffraction grating can be made out of this mirror, by scraping away areas near the edge of the mirror that usually cancel nearby amplitudes out—but now, since the photons don't reflect from the scraped-off portions, the probability amplitudes that would all point, for instance, at forty-five degrees, can have a sizable sum. Thus, this lets light of the right frequency sum to a larger probability amplitude, and as such possess a larger probability of reaching the appropriate final point. This particular description involves many simplifications: a point source, a "surface" that light can reflect off of (thus neglecting the interactions with electrons) and so forth.
In pure Yang–Mills theory this vertex vanishes on-shell, but it is necessary to construct the (++++) amplitude at one loop. This amplitude vanishes in any supersymmetric theory, but does not in the non-supersymmetric case. The other drawback is the reliance on cut-constructibility to compute the loop integrals. This therefore cannot recover the rational parts of amplitudes (i.e.
An MP3 file is made up of MP3 frames, which consist of a header and a data block. This sequence of frames is called an elementary stream. Due to the "bit reservoir", frames are not independent items and cannot usually be extracted on arbitrary frame boundaries. The MP3 Data blocks contain the (compressed) audio information in terms of frequencies and amplitudes.
This factor is the main reason for the temperature amplitudes between day and night and seasonally. A major difference compared to the rest of Sicily is in the case of precipitation. The highest levels are encountered on the east slopes of the volcano. The rain is practically absent in the summer, can also be very high during the autumn – winter period.
In January 2005, a rotational lightcurve of Lyka was obtained from photometric observations by Matthieu Conjat. Lightcurve analysis gave a well- defined rotation period of hours with a low brightness variation of magnitude, indicative of a rather spherical shape (). In October 2018, the period was confirmed by Laurent Bernasconi () and by Alfonso Carreño of OBAS () with amplitudes of and , respectively ().
Within-subject study design is often implemented to help eliminate variability introduced by electrode placement. Between-subject study design requires rigorous histologic verification of electrode placement to ensure consistency between experimental groups. Subjects with imperfect electrode placement require a higher simulation amplitude to activate the reward circuitry and produce ICSS responding. Subjects with ideal anatomical placement will respond at lower stimulation amplitudes.
For this purpose the zone of the zodiac was represented on a plane with a horizontal line divided into thirty parts as the time or longitudinal axis. The vertical axis designates the width of the zodiac. The horizontal scale appears to have been chosen for each planet individually for the periods cannot be reconciled. The accompanying text refers only to the amplitudes.
Like saccades, microsaccades are usually binocular, and conjugate movements with comparable amplitudes and directions in both eyes. In the 1960s, scientists suggested the maximum amplitude for microsaccades should be 12 arcminutes to distinguish microsaccades and saccades. However, further studies have shown that microsaccades can certainly exceed this value. Therefore, amplitude can no longer be used to distinguish microsaccades and saccades.
A post-stack attribute that computes the square root of the sum of squared amplitudes divided by the number of samples within the specified window used. With this root mean square amplitude, one can measure reflectivity in order to map direct hydrocarbon indicators in a zone of interest. However, RMS is sensitive to noise as it squares every value within the window.
This calculated Fourier transform contain both amplitudes (as seen) and phases (not displayed). Electron diffraction pattern of the same crystal of inorganic tantalum oxide shown above. Notice that there are many more diffraction spots here than in the diffractogram calculated from the EM image above. The diffraction extends to 12 orders along the 15 Å direction and 20 orders in the perpendicular direction.
While it is not clear how this happens in detail, surgical intervention by means of lesioning small parts of the central lateral thalamic areas has proven successful as a therapy for Parkinson's Disease as well as neurogenic pain. Neurofeedback, where the brain is trained to emphasise and de-emphasise brain wave frequencies, amplitudes and coherence can be an effective noninvasive therapy.
The range of frequencies that a piece of equipment can process and is directly related to the system's ability to uniformly transfer signal components of different frequencies over the entire video spectrum without affecting their amplitudes. This parameter is also known as gain/frequency distortion or amplitude versus frequency response. The amplitude variation maybe expressed in dB, percent or IRE.
In linguistics research, harmonic additive synthesis was used in 1950s to play back modified and synthetic speech spectrograms. Later, in early 1980s, listening tests were carried out on synthetic speech stripped of acoustic cues to assess their significance. Time-varying formant frequencies and amplitudes derived by linear predictive coding were synthesized additively as pure tone whistles. This method is called sinewave synthesis.
This ensures maximum amplitudes in positive and negative direction. A typical IEPE sensor supply with 4 mA constant current and 25 V compliance voltage has a power consumption of 100 mW. This can be a drawback in battery powered systems. For such applications low-power IEPE sensors exist which can be operated at only 0.1 mA constant current from a 12 V supply.
V1429 Aquilae shows brightness variations of about 0.3 magnitudes and a detectable period of 4.16 days. No longterm variations in brightness have been detected over several decades of observations. The profiles of many spectral lines also vary with the same period, produced partly by radial velocity variations. The absorption and emission lines show different radial velocity amplitudes, but with the same period.
Vinogradov, S.V., and R.M. Ponte, 2011: Low-frequency variability in coastal sea level from tide gauges and altimetry. Journal of Geophysical Research, 116, C07006, doi:10.1029/2011JC007034. The largest amplitudes in the annual cycle are generally noted near areas with large river outflow such as along the Bay of Bengal, the Gulf of Bohai, the St. Lawrence River, and the Rio Uruguay.
63.001380 However, in conventional photo-reflectance analysis, it is not necessary to independently determine the refractive and absorptive components (the first and second terms in ΔR/R, respectively) of the signal. Rather, a fit to the overall signal is performed using the third derivative functional form given by Aspnes.[20] This fit procedure yields the interband transition energies, amplitudes, and widths.
For this, the modulation index, or amplitude- modulation ratio, is defined as '. The normalized carrier frequency, or frequency-modulation ratio, is calculated using the equation '. If the over- modulation region, ma, exceeds one, a higher fundamental AC output voltage will be observed, but at the cost of saturation. For SPWM, the harmonics of the output waveform are at well-defined frequencies and amplitudes.
The amplitudes of the strain 'h' is dependent on the masses of the objects causing waves, distances from observation point and gravitational waves detection frequencies. The associated distance measures are dependent on the cosmological parameters like the Hubble Constant for nearby objects and will be dependent on other cosmological parameters like the dark energy density, matter density, etc. for distant sources.
However, in many instances the more relevant figure of merit is the polarizer's degree of polarization or extinction ratio, which involve a comparison of g1 to g2. Since Jones vectors refer to waves' amplitudes (rather than intensity), when illuminated by unpolarized light the remaining power in the unwanted polarization will be (g2/g1)2 of the power in the intended polarization.
Examples of exceptions include the circular drum, – a timpani whose first overtone is about 1.6 times its fundamental resonance frequency,Elena Prestini, The Evolution of Applied Harmonic Analysis: Models of the Real World, (p140) gongs and cymbals, and brass instruments. The human vocal tract is able to produce highly variable amplitudes of the overtones, called formants, which define different vowels.
However quantum mechanics tells us that to find the total probability we have to sum up the quantum-mechanical amplitudes of the paths rather than the probabilities themselves. Therefore, the correct (quantum-mechanical) formula for the probability for an electron to move from a point A to a point B includes the classical part (individual probabilities of diffusive paths) and a number of interference terms (products of the amplitudes corresponding to different paths). These interference terms effectively make it more likely that a carrier will "wander around in a circle" than it would otherwise, which leads to an increase in the net resistivity. The usual formula for the conductivity of a metal (the so-called Drude formula) corresponds to the former classical terms, while the weak localization correction corresponds to the latter quantum interference terms averaged over disorder realizations.
He was Editor-in-Chief of the International Journal of Applied Cryptography His seminal work about one-atom lasersYi Mu and Craig Savage, One-atom Lasers, Phy. Rev. A, 46, page 5944 (1992) (single atom laser) was experimentally realized by H. Jeff Kimble. His work on quantum key distribution is regarded as MSZ96 protocol, which is based on quantized quadrature phase amplitudes of light.
The primary component is an evolved red giant star with a stellar classification of M3 IIICa-1. It is an irregular variable with seven measured pulsation periods ranging from 22.4 to 162.6 days, and amplitudes ranging up to 0.m022. The star is a bright X-ray source with a luminosity of . There is a magnitude 8.3 companion at an angular separation of 0.04 arcseconds.
Alpha Cygni (α Cyg) variables are nonradially pulsating supergiants of spectral classes Bep to AepIa. Their periods range from several days to several weeks, and their amplitudes of variation are typically of the order of 0.1 magnitudes. The light changes, which often seem irregular, are caused by the superposition of many oscillations with close periods. Deneb, in the constellation of Cygnus is the prototype of this class.
Real Magnets usually do not have a continuous symmetry, since the spin-orbit coupling of the electrons imposes an anisotropy. For atomic systems like graphene, one can show that monolayers of cosmological (or at least continental) size are necessary to measure a significant size of the amplitudes of fluctuations. A recent discussion about the Mermin-Wagner-Hohenberg-Theorems and its limitations is given by Bertrand Halperin.
The Moho marks a large density contrast between crust and mantle, typically at least 0.35 g/cm3. The highest amplitudes of the gravity anomaly occur seaward of the continent-ocean transition. High-density upper mantle material is elevated relative to the more landward crustal root. The oceanic crust density is then further enhanced with gabbros and basalts and additionally contributes to the regional gravity trend.
The two components of this system have an orbital period of greater than 1,900 days (5.2 years). The primary component is an evolved red giant with the stellar classification of M3S III. This is an S-type star on the asymptotic giant branch. It is a semiregular variable that is pulsating with periods of 30.8 and 70.7 days, each with nearly identical amplitudes of 0.05 in magnitude.
It has been proposed that the trisynaptic circuit is responsible for the generation of hippocampal theta waves. These waves are responsible for the synchronization of different brain regions, especially the limbic system. In rats, theta waves range between 3–8 Hz and their amplitudes range from 50 to 100 μV. Theta waves are especially prominent during ongoing behaviors and during rapid eye movement (REM) sleep.
The climate is classified as tropical Atlantic (Aw), according to the type of Köppen. The temperature average is higher than 22° Celsius and the average annual rainfall reaches 1040 mm. Because it is a town near the coast, the effect of maritimidade is quite noticeable, resulting in thermal amplitudes relatively low. Below the picture of the normal monthly maximum temperature, minimum temperature and rainfall to Santa Cruz.
Agilent engineer demonstrates X-parameter functionality at IEEE MTT-S International Microwave Symposium, Boston MA June 10, 2009.) X-parameters are a generalization of S-parameters and are used for characterizing the amplitudes and relative phase of harmonics generated by nonlinear components under large input power levels. X-parameters are also referred to as the parameters of the Poly-Harmonic Distortion (PHD) nonlinear behavioral model.
Exploration Seismology. Cambridge University Press. They are the basis for investigating the factors affecting the amplitude of a returning seismic wave when the angle of incidence is altered — also known as amplitude versus offset analysis — which is a helpful technique in the detection of petroleum reservoirs. The Zoeppritz equations were not the first to describe the amplitudes of reflected and refracted waves at a plane interface.
Zappoli (2003) studied the ERP patterns, including the CNV, of subjects with brain disorders or brain damage. Zappoli reviews evidence which shows that in certain cases epileptic discharges affect the expectance waves and therefore decrease the CNV amplitude. Zappoli also described research which investigated the CNV characteristics in patients which had lobotomies of frontal regions. The CNV amplitudes were decreased or absent in these patients.
Acoustic emission (AE) is used to record the crackling noise from deforming crystals. The amplitudes of the acoustic signals can be related to the area swept by the fast-moving dislocations and hence to the energy dissipated during deformation events. The result shows that cracking noise is not smooth, with no specific energy scale. Effect of grain structure for “supercritical” flow has been studied in polycrystalline ice.
The channel is now in a preactivated state ⁠. By switching the channel into a preactivated state, LqhIT2 toxin increases the rate of spontaneous neurotransmitter release. Next, the increased rate of transmitter is followed by a reduction of synaptic potentials with eventually a block of neuromuscular transmission⁠. Within 3 minutes after application, the toxin decreases the amplitudes of synaptic signals that are based on Navs activity.
Vibration calibrator made around 1960 Vibration calibrators are electromechanical instruments which enable calibration of vibration sensors and measuring instruments to traceable standards. They produce sinusoidal mechanical vibration signals with known amplitudes and frequencies. The vibrating part of the instrument is usually a cylindrical steel stud with an internal thread for attachment of the test object. An electrodynamic or piezoelectric actuator system is used to produce the vibrations.
The topological A-model comes with a target space which is a 6 real-dimensional generalized Kähler spacetime. In the case in which the spacetime is Kähler, the theory describes two objects. There are fundamental strings, which wrap two real-dimensional holomorphic curves. Amplitudes for the scattering of these strings depend only on the Kähler form of the spacetime, and not on the complex structure.
Contrast not only modifies latency, but also the amplitude of perceived motion. Any difference in latency between different edges will move the diamond along the upright ellipse, but will not tilt the path from the vertical. Contrast modifies the perceived motion amplitudes of each side before edge motion coupled with boundary intersections. Contrast effects not only real smooth movement, but also stroboscopic clear movement.
The shaped command that results from the convolution is then used to drive the system. If the impulses in the shaper are chosen correctly, then the shaped command will excite less residual vibration than the unshaped command. The amplitudes and time locations of the impulses are obtained from the system's natural frequencies and damping ratios. Shaping can be made very robust to errors in the system parameters.
The 2007 Kuril Islands earthquake occurred east of the Kuril Islands on 13 January at . The shock had a moment magnitude of 8.1 and a maximum Mercalli intensity of VI (Strong). A non-destructive tsunami was generated, with maximum wave amplitudes of . The earthquake is considered a doublet of the 8.3 magnitude 2006 Kuril Islands earthquake which occurred the previous November approximately 95 km to the southeast.
PP is also equal to another quantum complexity class known as PQP, which is the unbounded error analog of BQP. It denotes the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of less than 1/2 for all instances. Even if all amplitudes used for PQP-computation are drawn from algebraic numbers, still PQP coincides with PP.
Vibration training is the deliberate exposure to the body of varying frequencies/amplitudes/forces using certain joint angles for any limited time (approximately 1 minute sets). It is also known as vibration therapy,vibrotherapy, biomechanical stimulation (BMS), mechanostimulation and biomechanical oscillation (BMO). It employs low amplitude, low frequency mechanical stimulation. It can be pivotal/oscillating (vibrating from side to side) or lineal (vibrating up and down).
In the eastern part of Ovda, the structural setting is defined mainly by wide folds and ribbons structures. The wide folds are observed to have amplitudes up to 25 km and several hundred km in length. While the ribbons structures generally hold a radial pattern. Some of the ribbons structures on this part of Ovda are quite difficult to interpret due to the SAR images' limited resolution.
The main result was the building of a tide- predicting machine using a system of pulleys to add together six harmonic time functions. It was "programmed" by resetting gears and chains to adjust phasing and amplitudes. Similar machines were used until the 1960s. The first known sea-level record of an entire spring–neap cycle was made in 1831 on the Navy Dock in the Thames Estuary.
The relative amplitudes of these peaks represent either a binary one or zero. A relatively high amplitude on either peak represents a one, a relatively low amplitude represents a zero. In each channel is a separate bitstream, the left channel is not identical to the right (disregarding the phase difference). The time codes themselves consist of 40 individual bits, or 20 cycles on each channel's waveform.
Amplitude panning is a technique in sound engineering where the same sound signal is applied to a number of loudspeakers in different directions equidistant from the listener. Then, a virtual source appears to a direction that is dependent on amplitudes of the loudspeakers. The direction may not coincide with any physical sound source. Most typically amplitude panning has been used with stereophonic loudspeaker setup.
The path integral formulation of quantum mechanics actually refers not to path integrals in this sense but to functional integrals, that is, integrals over a space of paths, of a function of a possible path. However, path integrals in the sense of this article are important in quantum mechanics; for example, complex contour integration is often used in evaluating probability amplitudes in quantum scattering theory.
The putamen is interconnected with many other structures, and works in conjunction with them to influence many types of motor behaviors. These include motor planning, learning, and execution, motor preparation, specifying amplitudes of movement, and movement sequences. Some neurologists hypothesize that the putamen also plays a role in the selection of movement (e.g. Tourette syndrome) and the "automatic" performance of previously learned movements (e.g.
Superposition of almost plane waves (diagonal lines) from a distant source and waves from the wake of the ducks. Linearity holds only approximately in water and only for waves with small amplitudes relative to their wavelengths. Rolling motion as superposition of two motions. The rolling motion of the wheel can be described as a combination of two separate motions: translation without rotation, and rotation without translation.
One is lack of perceptual roughness. Roughness happens when partials (frequency components) lie within a critical bandwidth, which is a measure of the ear's ability to separate different frequencies. Critical bandwidth lies between 2 and 3 semitones at high frequencies and becomes larger at lower frequencies. The roughness of two simultaneous harmonic complex tones depends on the amplitudes of the harmonics and the interval between the tones.
The final results of the experiment show that emotion effects were associated with the N170 in which there was a larger (negative) amplitude for faces when they appeared in a fearful context then when placed in happy or neutral scenes. In fact, left occipito-temporal distributed N170 amplitudes were dramatically increased for intact fearful faces when they appeared in a fearful scene, though levels were not as high when a fearful face was presented in a happy or neutral scene. Similar results did occur in regard to intact happy faces, but the amplitudes were not as high as those related to fearful scenes or expressions. Righart and de Gelder conclude that information from task-irrelevant scenes is rapidly combined with the information from facial expressions, and that subjects use context information in the early stage of processing when they need to discriminate/categorize facial expressions.
Diagram showing the mode conversions that occur when a P-wave reflects off an interface at non-normal incidence The situation becomes much more complicated in the case of non-normal incidence, due to mode conversion between P-waves and S-waves, and is described by the Zoeppritz equations. In 1919, Karl Zoeppritz derived 4 equations that determine the amplitudes of reflected and refracted waves at a planar interface for an incident P-wave as a function of the angle of incidence and six independent elastic parameters. These equations have 4 unknowns and can be solved but they do not give an intuitive understanding for how the reflection amplitudes vary with the rock properties involved. The reflection and transmission coefficients, which govern the amplitude of each reflection, vary with angle of incidence and can be used to obtain information about (among many other things) the fluid content of the rock.
The frequency spectrum of HD 49933 was confronted to the stochastic excitation model developed by Samadi et al. Except at high frequencies, a good agreement can be reached by adopting a metallicity ten times smaller than the solar metallicity. With the solar value on the contrary, disagreements in amplitudes can reach a factor 2 at low frequencies. # Granulation: The presence of granulation was detected in the frequency spectrum of HD 49933.
This setup can be used either to acquire cantilever vibration spectra or to take acoustic images. The latter are maps of cantilever amplitudes on a fixed excitation frequency near the resonance. A contact-mode topography image is acquired simultaneously with the acoustic one. The frequency range employed covers the flexural modes of the cantilever from 10 kHz up to 5 MHz, with an average frequency of around 3 MHz.
In August 1987, a rotational lightcurve of Hertzsprung was obtained from photometric observations made with the ESO 1-metre telescope at La Silla Observatory in Chile. The lightcurve gave it a well-defined rotation period of hours with a brightness amplitude of 0.45 magnitude (). Observations by the NEOWISE mission found higher amplitudes of 0.70 and 1.05, which indicates that the body has a non-spheroidal or elongated shape.
The Britto–Cachazo–Feng–Witten recursion relations are a set of on-shell recursion relations in quantum field theory. They are named for their creators, Ruth Britto, Freddy Cachazo, Bo Feng and Edward Witten. The BCFW recursion method is a way of calculating scattering amplitudes. This technique is widely used in analytic calculations due to the relative conciseness of the resulting expressions, when compared to the more traditional methods.
Nanoelectromechanical systems (NEMS) can be designed and characterized by understanding the interaction and coupling between the mechanical, electrical, and the van der Waals energy domains. Quantum mechanical limit governed by Heisenberg uncertainty relation decides the ultimate precision of nanomechanical systems. Quantum squeezing can improve the precision by reducing quantum fluctuations in one desired amplitude of the two quadrature amplitudes. Traditional NEMS hardly achieve quantum squeezing due to their thickness limits.
The depth is important, but uncertain in the top 50 km. The depths of earthquakes range from 0 to about 700 km. Generally, only the earthquakes in the top 100 km are close enough to settlements to cause casualties. The decrease of the wave amplitudes as a function of distance (Figure 2) shows that dangerous intensities, I≥VII, do not exist beyond 30 to 50 km for major earthquakes.
The physical principles of the discharge do not limit the operating frequency range. The typical frequencies of commonly used solid-state high voltage supplies are 0.05 – 500 kHz. The voltage amplitudes of the order of 5 – 20 kV produce electric currents in the range of 10 – 100 mA. The power of the dielectric barrier discharge is significantly higher than that of the corona discharge, but smaller comparing to the arc discharge.
Compression of gain is caused by non-linear characteristics of the device when run at large amplitudes. With any signal, as the input level is increased beyond the linear range of the amplifier, gain compression will occur. A transistor's operating point may move with temperature, so higher power output may lead to compression due to collector dissipation. But it's not a change in gain; it's non-linear distortion.
The following are simulated sounds for the Silver Lake low-frequency radio. The range station--located about 10 miles north of Baker, California--would preempt the navigational signals every 30 seconds to transmit its Morse code identifier ("RL"). The station identification would be heard once or twice, possibly with different relative amplitudes, depending on the aircraft location. Pilots would listen to and navigate by these sounds for hours while flying.
Many time-dependent stochastic processes are known to exhibit 1/f α noises with α between 0 and 2. In particular Brownian motion has a power spectral density that equals 4D/f 2, where D is the diffusion coefficient. This type of spectrum is sometimes referred to as Brownian noise. Interestingly, the analysis of individual Brownian motion trajectories also show 1/f 2 spectrum, albeit with random amplitudes.
Internal waves typically have much lower frequencies and higher amplitudes than surface gravity waves because the density differences (and therefore the restoring forces) within a fluid are usually much smaller. Wavelengths vary from centimetres to kilometres with periods of seconds to hours respectively. The atmosphere and ocean are continuously stratified: potential density generally increases steadily downward. Internal waves in a continuously stratified medium may propagate vertically as well as horizontally.
She is also involved with the "Passeurs d'Art" associationSite de l'association Passeurs d'Art for the creation of free children's orchestras. For her research, she starts from works on the atonal music of her teacher Julien Falksudoc.abes.fr, Du contrepoint au contrepoint atonal : en hommage à Julien Falk to develop a new musical system called "hypertonality". This is based on spiral scales (in amplitudes higher than the octave), radically transforming atonal counterpoint techniques.
However, rainfall from Ignacio was light. The second storm to affect the state, Tropical Storm Linda dropped heavy rainfall along the windward slopes of the island chain. In early September, Hurricane Pauline came close enough to require a hurricane watch, but the watch was discontinued when Pauline veered north. However, the storm did produced high waves, with amplitudes of to on the eastern side of Puna and Kau.
The interference between two (or more) waves establishes a correlation between these waves. In particle physics, in particular, where to each particle there is associated a wave, we encounter thus interference and correlations between two (or more) particles, described mathematically by second or higher order correlation functions.The correlation function of order n defines the transition amplitudes between states containing n particles. These correlations have quite specific properties for identical particles.
This suffices to avoid unphysical divergences, e.g. in scattering amplitudes. The requirement of a UV fixed point restricts the form of the bare action and the values of the bare coupling constants, which become predictions of the asymptotic safety program rather than inputs. As for gravity, the standard procedure of perturbative renormalization fails since Newton's constant, the relevant expansion parameter, has negative mass dimension rendering general relativity perturbatively nonrenormalizable.
In that case, the fringes for sideband n correspond to the zeros of the Bessel function J_n(\phi). By sequential imaging of frequency sidebands, the issue of fringe counting has been alleviated. The side band order is a marker of the local amplitude of sinusoidal out-of-plane motion. Multiplexed measurements of optical sidebands enable quantitative measurements of out-of-plane vibration amplitudes much smaller than the optical wavelength.
In 2007, Ravela et al. introduce the joint position-amplitude adjustment model using ensembles, and systematically derive a sequential approximation which can be applied to both EnKF and other formulations. Their method does not make the assumption that amplitudes and position errors are independent or jointly Gaussian, as others do. The morphing EnKF employs intermediate states, obtained by techniques borrowed from image registration and morphing, instead of linear combinations of states.
Expanding in g and computing the functional derivatives, we are able to obtain all the n-point functions with perturbation theory. Using LSZ reduction formula we get from the n-point functions the corresponding process amplitudes, cross sections and decay rates. The theory is renormalizable and corrections are finite at any order of perturbation theory. For quantum electrodynamics the ghost field decouples because the gauge group is abelian.
In publications, a common method is to try various currents at some increments (e.g. 10 pA), and find the two consecutive current amplitudes that do and do not result in action potentials. The smallest difference between the lower and upper currents used is the rheobase search precision: the "true" rheobase is somewhere between the two tested current values. Precision is also affected by thermal noise and stochastic nature of ion channels.
GABAA receptor function is inhibited by zinc ions. The ions bind allosterically to the receptor, a mechanism that is critically dependent on the receptor subunit composition. De novo heterozygous missense mutations within a highly conserved region of the GABRB3 gene can decrease the peak current amplitudes of neurons or alter the kinetic properties of the channel. This results in the loss of the inhibitory properties of the receptor.
Cooling depolarized the neural tissue, bringing the cells closer to the threshold necessary for an action potential (spike). Cooling increased spike width, and between 12 and 20°C, spike amplitudes were greatest. Cooling decreased passive potassium conductance while increasing the activation threshold and lowering the amplitude of voltage-gated potassium channels (thus essentially reducing the cells’ capability to repolarize after an action potential). No sodium channel characteristics were altered.
He currently holds the Gluskin Sheff Freeman Dyson Chair in Theoretical Physics. Cachazo's research concerns quantum field theory, the underlying theory describing fundamental interactions of particles and space-time itself. The research program is to understand their deep structure through the study of scattering amplitudes. Such understanding allows for both efficient computation of the probabilities of physical processes occurring and insights into the unknown structures of the gauge theories and gravity.
The Achem criteria are more stringent, and are an extension of the study of 93 patients used by Richter and Castell in the development of their criteria, and require amplitudes of greater than 199 mm Hg at 3 cm above the lower esophageal sphincter (LES), greater than 172 mm Hg at 8 cm above the LES, or greater than 102 mm Hg at 13 cm above the LES.
Fig. 4 The temperature-induced translational motion of particles in solids takes the form of phonons. Shown here are phonons with identical amplitudes but with wavelengths ranging from 2 to 12 average inter-molecule separations (a). Heat conduction is the diffusion of thermal energy from hot parts of a system to cold parts. A system can be either a single bulk entity or a plurality of discrete bulk entities.
A finite, non-zero SWR indicates a wave that is partially stationary and partially travelling. Such waves can be decomposed into a superposition of two waves: a travelling wave component and a stationary wave component. An SWR of one indicates that the wave does not have a stationary component – it is purely a travelling wave, since the ratio of amplitudes is equal to 1.R S Rao, Microwave Engineering, pp.
The line impedance must be matched to the impedance of the antenna at one end and the transmitter at the other to efficiently transfer power between the transmitter and its antenna. If the impedances at either end of the line do not match, it will cause a condition called "standing waves" on the feed line, in which the RF energy is reflected back toward the transmitter, wasting energy and possibly overheating the transmitter. The impedance is matched through a device called an antenna tuner or matching network, which can be in the transmitter, next to the transmitter, near the antenna, on the antenna, or any combination, including none. The degree of mismatch between the feedline and the antenna is measured by an instrument called an SWR meter (standing wave ratio meter), which measures the standing wave ratio (SWR) on the line: The ratio of the adjacent maximum and minimum voltage amplitudes, or adjacent maximum and minimum current amplitudes.
Consider a system in a state A, which is the eigenstate of some measurement operator. Say the system under free time evolution will decay with a certain probability into state B. If measurements are made periodically, with some finite interval between each one, at each measurement, the wave function collapses to an eigenstate of the measurement operator. Between the measurements, the system evolves away from this eigenstate into a superposition state of the states A and B. When the superposition state is measured, it will again collapse, either back into state A as in the first measurement, or away into state B. However, its probability of collapsing into state B after a very short amount of time t is proportional to t^2, since probabilities are proportional to squared amplitudes, and amplitudes behave linearly. Thus, in the limit of a large number of short intervals, with a measurement at the end of every interval, the probability of making the transition to B goes to zero.
Tempestite deposits are very useful for aiding in paleoecological and paleogeographical interpretations. As storms that generate tempestite deposits can only form in between 5 degrees and 20 degrees north and south latitude (with even the largest 1000 year storm only being preserved upwards of 35 degrees latitude), accurate recognition of a tempestite deposit within the rock record allows for confident interpretation of a range of latitudes. Since hummocky cross stratification forms during the combined flow and waning oscillatory flow current regimes, the preserved amplitudes of their hummocks and swales are reflective of the storm intensity. Once it is understood where the deposit in question was deposited relative to the paleo-shoreline, which can usually be done using the ichnological data preserved in the same location, the hummock amplitudes/wavelengths, grainsize (decreases with increase in paleo water depth), and bedding thickness (decreases with increase in paleo water depth) can be used to estimate the storm intensity/energy.
Phase synchronization occurs when the coupled chaotic oscillators keep their phase difference bounded while their amplitudes remain uncorrelated. This phenomenon occurs even if the oscillators are not identical. Observation of phase synchronization requires a previous definition of the phase of a chaotic oscillator. In many practical cases, it is possible to find a plane in phase space in which the projection of the trajectories of the oscillator follows a rotation around a well-defined center.
An important caveat is that the existence of abnormally rising or falling amplitudes can sometimes be caused by other factors, such as alternative lithologies and residual hydrocarbons in a breached gas column. Not all oil and gas fields are associated with an obvious AVO anomaly (e.g. most of the oil found in the Gulf of Mexico in the last decade), and AVO analysis is by no means a panacea for gas and oil exploration.
To accommodate a wide range of input amplitudes, a switch selects calibrated sensitivity of the vertical deflection. Another control, often in front of the calibrated-selector knob, offers a continuously-variable sensitivity over a limited range from calibrated to less-sensitive settings. Often the observed signal is offset by a steady component, and only the changes are of interest. An input coupling switch in the "AC" position connects a capacitor in series with the input.
Wind-induced changes are observed all through the year, but are more frequent in autumn when the winds are strong and steady. In general, the sea level rises with northern and lowers with southern winds, but depending on the area, the maximum amplitude is observed for a specific wind direction (e.g. western and north-western in the south- eastern part of the sea). They average amplitudes are 1–2 m and may exceed near Tiksi.
After a significant event, or an important stimuli to which the subject is instructed to respond, there is an increase in electrical activity. COGA is investigating, for example, the P3 (or P300) peak of the ERP that occurs approximately 300 ms after the stimuli presentation. Varying amplitudes of the wave have different behavioral implications. The amplitude is fairly consistent throughout families and steady across time, suggesting an inherited component, as opposed to an environmental component.
Thus, R(X) simultaneously serves both as the representation of the particular state, X, and as a probability distribution over all states. When any given code, e.g., R(A), is active, all other codes stored in the model are also physically active in proportion to their intersection with R(A). Thus, SDR provides a classical realization of quantum superposition in which probability amplitudes are represented directly and implicitly by sizes of set intersections.
This is the normalization (see below) requirement. If the system is known to be in some eigenstate of (e.g. after an observation of the corresponding eigenvalue of ) the probability of observing that eigenvalue becomes equal to 1 (certain) for all subsequent measurements of (so long as no other important forces act between the measurements). In other words the probability amplitudes are zero for all the other eigenstates, and remain zero for the future measurements.
In 1934, Adrian and Matthew noticed potential changes of the occipital EEG can be observed under stimulation of light. Ciganek developed the first nomenclature for occipital EEG components in 1961. During that same year, Hirsch and colleagues recorded a visual evoked potential (VEP) on the occipital lobe (externally and internally), and they discovered amplitudes recorded along the calcarine fissure were the largest. In 1965, Spehlmann used a checkerboard stimulation to describe human VEPs.
An example of mathematical physics: solutions of Schrödinger's equation for quantum harmonic oscillators (left) with their amplitudes (right). Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories".Definition from the Journal of Mathematical Physics.
The bat calling sound is a long and slowly repeating signal. If males hear the call of an approaching bat or a similar sound, they will stop their mate calling. The males will remain silent for several milliseconds to more than a minute. More sexually attractive males, those with higher single pulse pair rates and amplitudes, experience a higher risk of predation because they resume mate calling sooner than less attractive males.
This reflects the fact that the eye is less sensitive to fine color details than to fine brightness details. # The image is split into blocks of 8×8 pixels, and for each block, each of the Y, CB, and CR data undergoes the discrete cosine transform (DCT). A DCT is similar to a Fourier transform in the sense that it produces a kind of spatial frequency spectrum. # The amplitudes of the frequency components are quantized.
Amplituhedron theory challenges the notion that spacetime locality and unitarity are necessary components of a model of particle interactions. Instead, they are treated as properties that emerge from an underlying phenomenon. The connection between the amplituhedron and scattering amplitudes is at present a conjecture that has passed many non-trivial checks, including an understanding of how locality and unitarity arise as consequences of positivity. Research has been led by Nima Arkani-Hamed.
A polytope is the n-dimensional analogue of a 3-dimensional polyhedron, the values being calculated in this case are scattering amplitudes, and so the object is called an amplituhedron. Using twistor theory, BCFW recursion relations involved in the scattering process may be represented as a small number of twistor diagrams. These diagrams effectively provide the recipe for constructing the positive Grassmannian, i.e. the amplituhedron, which may be captured in a single equation.
Motor NCS Motor NCS are obtained by stimulating a motor nerve and recording at the belly of a muscle innervated by that nerve. The CMAP is the resulting response, and depends on the motor axons transmitting the action potential, status of the neuromuscular junction, and muscle fibers. The CMAP amplitudes, motor onset latencies, and conduction velocities are routinely assessed and analyzed. As with sensory NCS, conduction velocity is calculated by dividing distance by time.
In fact, virtually all oscillators become anharmonic when their pump amplitude increases beyond some threshold, and as a result it is necessary to use nonlinear equations of motion to describe their behavior. Anharmonicity plays a role in lattice and molecular vibrations, in quantum oscillations, and in acoustics. The atoms in a molecule or a solid vibrate about their equilibrium positions. When these vibrations have small amplitudes they can be described by harmonic oscillators.
As tides or waves propagate upwards, they move into regions of lower and lower density. If the tide or wave is not dissipating, then its kinetic energy density must be conserved. Since the density is decreasing, the amplitude of the tide or wave increases correspondingly so that energy is conserved. Following this growth with height atmospheric tides have much larger amplitudes in the middle and upper atmosphere than they do at ground level.
The next figures shows what happens to the compressed pulse when the compressor is set at 2T duration and then at 1.1T duration. New far-out sidelobes have appeared with amplitudes that make them clearly visible. These sidelobes are often referred to as “gating sidelobes”. They can be irritatingly high but, fortunately, even if the compressor is set have just 10% extension, the sidelobes are still at a level than that achieved without correction.
Much of the mathematical apparatus of quantum mechanics appears in the classical description of a polarized sinusoidal electromagnetic wave. The Jones vector for a classical wave, for instance, is identical with the quantum polarization state vector for a photon. The right and left circular components of the Jones vector can be interpreted as probability amplitudes of spin states of the photon. Energy conservation requires that the states be transformed with a unitary operation.
The mathematical discussion presented above does not require quantum mechanics at its heart. In particular, the derivation is essentially valid for waves of any sort. With slight modifications to account for the squaring of amplitudes, the derivation could be applied to, for example, sound waves or water waves in a ripple tank. For the relation to be a precise formulation of Bohr complementarity, one must introduce wave–particle duality in the discussion.
Classical Cepheid variables with visual amplitudes below 0.5 magnitudes, almost symmetrical sinusoidal light curves, and short periods, have been defined as a separate group called small amplitude Cepheids. They receive the acronym DCEPS in the GCVS. Periods are generally less than 7 days, although the exact cutoff is still debated. The term s-Cepheid is used for short period small amplitude Cepheids with sinusoidal light curves that are considered to be first overtone pulsators.
It is often incorrectly assumed that Gaussian noise (i.e., noise with a Gaussian amplitude distributionsee normal distribution) necessarily refers to white noise, yet neither property implies the other. Gaussianity refers to the probability distribution with respect to the value, in this context the probability of the signal falling within any particular range of amplitudes, while the term 'white' refers to the way the signal power is distributed (i.e., independently) over time or among frequencies.
The main most important features in this region are strong zonal (East-West) winds, atmospheric tides, internal atmospheric gravity waves (commonly called "gravity waves"), and planetary waves. Most of these tides and waves start in the troposphere and lower stratosphere, and propagate to the mesosphere. In the mesosphere, gravity-wave amplitudes can become so large that the waves become unstable and dissipate. This dissipation deposits momentum into the mesosphere and largely drives global circulation.
Vibrations are transmitted to the substrate through the legs or body. ; Tymbal vibrations: Insects possess tymbals which are regions of the exoskeleton modified to form a complex membrane with thin, membranous portions and thickened "ribs". These membranes vibrate rapidly, producing audible sound and vibrations that are transmitted to the substrate. ; Acoustically coupled: Elephants produce low-frequency vocalizations at high amplitudes such that they couple with the ground and travel along the surface of the earth.
The R482X mutation results in increased current amplitudes and an accelerated fast time constant of inactivation. Whether these modest functional differences may be in charge of JME remains to be established. Calcium channel β4 subunit (CACNB4) is not strictly considered a putative JME gene because its mutation did not segregate in affected family members, and it was found in only one member of a JME family from Germany, and it has not been replicated.
In many cases, an initial set of phases are determined, and the electron density map for the diffraction pattern is calculated. Then the map is used to determine portions of the structure, which portions are used to simulate a new set of phases. This new set of phases is known as a refinement. These phases are reapplied to the original amplitudes, and an improved electron density map is derived, from which the structure is corrected.
The full specification of a quantization procedure requires methods of performing renormalization. The first method to be developed for quantization of field theories was canonical quantization. While this is extremely easy to implement on sufficiently simple theories, there are many situations where other methods of quantization yield more efficient procedures for computing quantum amplitudes. However, the use of canonical quantization has left its mark on the language and interpretation of quantum field theory.
The primary component is an F-type main sequence star with a stellar classification of F4 V, a star that is currently fusing its core hydrogen. It is a probable delta scuti variable showing periodicities of 4.7 and 5.5 cycles per day with amplitudes of 0.014 and 0.011 magnitudes, respectively. The secondary companion is a red dwarf with a mass of about 0.3 solar, suggesting a class of M3/M4. Ehrenreich et al.
The Michelson interferometer is a common configuration for optical interferometry and was invented by Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera.
Other studies have examined whether the ERN is elicited by varying the cost of an error and the evaluation of a response. In these trials, feedback is given about whether the participant has gained or lost money after a response. Amplitudes of ERN responses with small gains and small losses were similar. No ERN was elicited for any losses as opposed to an ERN for no wins, even though both outcomes are the same.
Due to the ability of the calcium- activated chloride channel to generate arrhythmias, blockage of the channel may result in antiarrythmogenic action. Blocking the calcium current reduces delayed after-depolarization amplitudes enough to prevent generation of an action potential. ACA has been shown to inhibit the calcium-activated chloride current, but this effect is reversible upon removal of the drug. ACA may also inhibit hyperpolarization of the cell, prolonging the action potential.
In physics, a breather is a nonlinear wave in which energy concentrates in a localized and oscillatory fashion. This contradicts with the expectations derived from the corresponding linear system for infinitesimal amplitudes, which tends towards an even distribution of initially localized energy. A discrete breather is a breather solution on a nonlinear lattice. The term breather originates from the characteristic that most breathers are localized in space and oscillate (breathe) in time.
Along with David Deutsch and David Wallace, he has developed techniques for deriving the Born Rule, which relates quantum amplitudes to objective probabilities. He has applied these arguments to operational approaches to quantum mechanics2004a ‘Derivation of the Born Rule from Operational Assumptions’, Proceedings of the Royal Society A, 460, 1-18. as well as to MWI.2005b ‘What is Probability?’, in Quo Vadis Quantum Mechanics, A. Elitzur, S. Dolev, and N. Kolenda, eds.
An update to this initial study was completed by Tsimplis and Woodworth in 1994Tsimplis, M.N., and P.L. Woodworth, 1994: The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. Journal of Geophysical Research, 99, 16031-16039. at the beginning of the satellite altimetry era. In general, amplitudes of the annual cycle are less than 150mm (6 inches) and are typically larger in the Northern Hemisphere than in the Southern Hemisphere.
According to Fresnel Diffraction theory a convex lens of focal length f will produce the exact Fourier transform at a distance f behind the lens of an object placed f distance in front of the lens. So that complex amplitudes are multiplied, the light source must be coherent and is typically from a laser. The input signal and filter are commonly written onto a spatial light modulator (SLM). A typical arrangement is the 4f correlator.
Recently, researchers have been able to map out distinct patterns of neural activity in the hippocampus triggered by different events. These neural patterns were geometricalled shaped as cliques, which is a fully connected network of nodes. The activity patterns associated with certain startling experiences recurred spontaneously—at intervals ranging from seconds to minutes after the actual event—that showed similar trajectories, including the characteristic geometric shape, but with smaller amplitudes than their original responses.
Subdwarf B (sdB) stars are in essence the cores of core- helium burning giants who have somehow lost most of their hydrogen envelopes, to the extent that there is no hydrogen-burning shell. They have multiple oscillation periods that range between about 1 and 10 minutes and amplitudes anywhere between 0.001 and 0.3 mag in visible light. The oscillations are low- order pressure modes, excited by the kappa mechanism acting on the iron opacity bump.
134 Biofeedback also can measure electrical brain activity through a test called the Electroencephalograph (EEG). Another test, called the thermograph, measures skin temperature, because when a person is relaxed they have increased blood flow and a higher temperature. Another method is BVP biofeedback training, which improves chronic headaches by teaching a patient how to regulate and decrease arterial pulse amplitudes by restricting the arteries.Martin, Paul R. Psychological Management of Chronic Headaches p.
Mean annual temperatures in the Yungas range between . The mean annual temperatures in the Quebrada de Humahuaca valley range from , depending on altitude. In the Calchaquí Valleys in Salta Province, the climate is temperate and arid with large thermal amplitudes, long summers, and a long frost free period which varies by altitude. In both the Quebrada de Humahuaca and Calchaquí valleys, winters are cold with frosts that can occur between March and September.
Non-linear phononics is the physics in solids created or triggered by large amplitude oscillations of phonons, the elementary vibration of the crystal lattice. It is an extension of the field of phononics, which studies the regime of small harmonic vibrations and related phenomena in materials. In contrast to phononics, however, large amplitudes oscillation reveal the anharmonicity of the crystal lattice, which theoretical treatment requires the incorporation of higher order terms within the crystal potential.
In 1969, 't Hooft started on his doctoral research with Martinus Veltman as his advisor. He would work on the same subject Veltman was working on, the renormalization of Yang–Mills theories. In 1971 his first paper was published. In it he showed how to renormalize massless Yang–Mills fields, and was able to derive relations between amplitudes, which would be generalized by Andrei Slavnov and John C. Taylor, and become known as the Slavnov–Taylor identities.
Low rhythmic seiches are almost always present on larger lakes. They are usually unnoticeable among the common wave patterns, except during periods of unusual calm. Harbours, bays, and estuaries are often prone to small seiches with amplitudes of a few centimetres and periods of a few minutes. The original studies in Lake Geneva by François-Alphonse Forel found the longitudinal period to have a 73-minute cycle, and the transversal seiche to have a period of around 10 minutes.
The latter operation point is used in gravitational-wave (GW) detectors. For improving an interferometer sensitivity with squeezed states of light, the already existing bright light does not need to be fully replaced. What has to be replaced is just the vacuum uncertainty in the difference of the phase quadrature amplitudes of the light fields in the arms, and only at modulation frequencies at which signals are expected. This is achieved by injecting a (broadband) squeezed vacuum field (Fig.
A cable pattern is like a set of serpentine or wave-like cables, each one meandering around its own center line. A vast variety of cable patterns can be invented by changing the number of cables, the separations of their center lines, the amplitudes of their waves (i.e., how far they wander from their center line), the shape of the waves (e.g., sinusoidal versus triangular), and the relative position of the crests and troughs of each wave (e.g.
A more recent study identified two possible periods of 43.7 and 48.1 days, with amplitudes of 0.038 and 0.023 magnitudes. The star is classified as a semiregular variable, of no specific subtype. In 2001, Psi Phoenicis was observed by the VLT Interferometer with the test instrument VINCI. The observations, in combination with stellar atmospheric models, detected the limb darkening effect on the star's disk and found an angular diameter of , corresponding to a stellar radius of .
These are yellow supergiant stars (actually low mass post-AGB stars at the most luminous stage of their lives) which have alternating deep and shallow minima. This double-peaked variation typically has periods of 30–100 days and amplitudes of 3–4 magnitudes. Superimposed on this variation, there may be long-term variations over periods of several years. Their spectra are of type F or G at maximum light and type K or M at minimum brightness.
Their seismic analysis seems to require a centrally mixed zone about 20% larger than what is expected from convection only. Another Be star, HD 49330, had a very exciting surprise in store. Observed by CoRoT during an outburst of matter towards its circumstellar disk, which is typical of such stars, its frequency spectrum suffered drastic changes. Firstly dominated by acoustic modes the spectrum showed the appearance of gravity modes with amplitudes strictly in line with the outburst.
"Sony DXC-1600", LabGuysWorld.com.. Although the idea of using color stripe filters over the target was not new, the Trinicon was the only tube to use the primary RGB colors. This necessitated an additional electrode buried in the target to detect where the scanning electron beam was relative to the stripe filter. Previous color stripe systems had used colors where the color circuitry was able to separate the colors purely from the relative amplitudes of the signals.
The semiregular variable stars fall on one of five main period-luminosity relationship sequences identified, differing from the Mira variables only in pulsating in an overtone mode. The closely related OSARG (OGLE small amplitude red giant) variables pulsate in an unknown mode. Many semiregular variables show long secondary periods around ten times the main pulsation period, with amplitudes of a few tenths of a magnitude at visual wavelengths. The cause of the pulsations is not known.
The differentiation between spiritual emergency associated with Kundalini awakening may be viewed as an acute psychotic episode by psychiatrists who are not conversant with the culture. The biological changes of increased P300 amplitudes that occurs with certain yogic practices may lead to acute psychosis. Biological alterations by Yogic techniques may be used to warn people against such reactions. Some modern experimental research seeks to establish links between Kundalini practice and the ideas of Wilhelm Reich and his followers.
They can go six minutes without breathing (though about two and a half minutes is more typical), and have been known to rest on their tail to breathe with their heads above water. They can dive to a maximum depth of ; they spend most of their lives no deeper than . Communication between individuals is through chirps, whistles, barks, and other sounds that echo underwater. Different sounds have been observed with different amplitudes and frequencies, implying different purposes.
Another outbursting star is AY Lyrae, an SU Ursae Majoris-type dwarf nova that has undergone several superoutbursts. Of the same type is V344 Lyrae, notable for an extremely short period between superoutbursts coupled with one of the highest amplitudes for such a period. The true nova HR Lyrae flared in 1919 to a maximum magnitude of 6.5, over 9.5 magnitudes higher than in quiescence. Some of its characteristics are similar to those of recurring novae.
The most convenient practice is to define the size of the regions or zones in terms of fixed numbers (fractions) of wavelengths distant from the center of the radiating part of the antenna, with the clear understanding that the values chosen are only approximate and will be somewhat inappropriate for different antennas in different surroundings. The choice of the cut-off numbers is based on the relative strengths of the field component amplitudes typically seen in ordinary practice.
An important part in the inversion procedure is the estimation of the seismic wavelets. This is accomplished by computing a filter that best shapes the angle-dependent well log reflection coefficients in the region of interest to the corresponding offset stack at the well locations. Reflection coefficients are calculated from P-sonic, S-sonic and density logs using the Zoeppritz equations. The wavelets, with amplitudes representative of each offset stack, are input directly into the inversion algorithm.
The ocean body surrounding the Antarctic is currently the only continuous body of water where there is a wide latitude band of open water. It interconnects the Atlantic, Pacific and Indian oceans, and provide an uninterrupted stretch for the prevailing westerly winds to significantly increase wave amplitudes. It is generally accepted that these prevailing winds are primarily responsible for the circumpolar current transport. This current is now thought to vary with time, possibly in an oscillatory manner.
It is divided into three basins, the northern being the shallowest and the southern being the deepest, with a maximum depth of . The Otranto Sill, an underwater ridge, is located at the border between the Adriatic and Ionian Seas. The prevailing currents flow counterclockwise from the Strait of Otranto, along the eastern coast and back to the strait along the western (Italian) coast. Tidal movements in the Adriatic are slight, although larger amplitudes are known to occur occasionally.
On the other hand, fluctuations do not provide an immediate information on the CIB brightness. The measured fluctuation amplitudes either has to be confronted with a CIB model that has a prediction for the fluctuation / absolute level ratio, or it has to be compared with integrated differential light levels of source counts at the same wavelength. The power spectrum of the CIB is usually presented in a spatial frequency [arcmin−1] vs. fluctuation power [Jy2 sr−1] diagram.
Figure 3 gives an S-N diagram of cumulative cycles being applied at different stress amplitudes. The variable n represents the number of cycles being applied at the designated stress level and N is the fatigue life at the same stress level. Figure 4 - Power Law Regime Many times, polymeric materials containing a crack are subject to cyclic loading in service. This decreases the life expectancy of the sample drastically and should be taken into consideration.
That leads to an excitation of waves with frequencies and wavelengths in wide intervals, not necessarily in resonance with an external source. In experiments with high shaking amplitudes one initially observes waves that are in resonance with one another. Thereafter, both longer and shorter waves appear as a result of wave interaction. The appearance of shorter waves is referred to as a direct cascade while longer waves are part of an inverse cascade of wave turbulence.
This work was published, among others, in a paper in the Memoirs of the Royal Astronomical Society (1885),Neison, E. Report of the superintendent, Natal Observatory, for 1885, p. H30-H31 describing the corrections required by Hansen's tables. He next studied all available lunar observations since the middle of the 17th century and reduced them to a uniform basis. Comparing these observations to Hansen's tables, he used the discrepancies to derive the amplitudes and periods of appropriate correction terms.
Other variables have been found to influence P3b amplitude. Some research using oddball tasks has indicated that females have larger P3b amplitudes than males, and that the amplitude increases more moving from frontal to parietal areas. Other research has found that learning in a topic area can affect P3b amplitude in tasks related to that area. One study took a group of individuals and gave some of them training in standard musical chord progressions while the others remained untrained.
In this picture, the boundaries of the instability strip where pulsation sets in during the star's evolution correspond to a Hopf bifurcation. The existence of a center manifold eliminates the possibility of chaotic (i.e. irregular) pulsations on the time scale of the period. Although resonant amplitude equations are sufficiently complex to also allow for chaotic solutions, this is a very different chaos because it is in the temporal variation of the amplitudes and occurs on a long time scale.
Helmholtz agreed with the finding of Ernst Chladni from 1787 that certain sound sources have inharmonic vibration modes. In Helmholtz's time, electronic amplification was unavailable. For synthesis of tones with harmonic partials, Helmholtz built an electrically excited array of tuning forks and acoustic resonance chambers that allowed adjustment of the amplitudes of the partials. Built at least as early as in 1862, these were in turn refined by Rudolph Koenig, who demonstrated his own setup in 1872.
Just as imposing the classical simplicity constraint recovers general relativity from BF theory, one expects an appropriate quantum simplicity constraint will recover quantum gravity from quantum BF theory. Much progress has been made with regard to this issue by Engle, Pereira, and Rovelli, Freidel and Krasnov and Livine and Speziale in defining spin foam interaction amplitudes with much better behaviour. An attempt to make contact between EPRL-FK spin foam and the canonical formulation of LQG has been made.
Ray tracing techniques can be applied to study light scattering by spherical and non- spherical particles under the condition that the size of a particle is much larger than the wavelength of light. The light can be considered as collection of separate rays with width of rays much larger than the wavelength but smaller than a particle. Rays hitting the particle undergoes reflection, refraction and diffraction. These rays exit in various directions with different amplitudes and phases.
Tidal constituents combine to give an endlessly varying aggregate because of their different and incommensurable frequencies: the effect is visualized in an animation of the American Mathematical Society illustrating the way in which the components used to be mechanically combined in the tide-predicting machine. Amplitudes of tidal constituents are given below for six example locations: Eastport, Maine (ME), Biloxi, Mississippi (MS), San Juan, Puerto Rico (PR), Kodiak, Alaska (AK), San Francisco, California (CA), and Hilo, Hawaii (HI).
The point of maximum brightness occurs when the star is smallest and hottest. Their variation in brightness is much greater—up to 1 magnitude—in ultraviolet wavelengths. A small number of stars have been identified with periods shorter than one hour, corresponding to 1/4 of the fundamental radial pulsation period and 3/8 of the fundamental period. They also have relatively low amplitudes and a very narrow range of spectral types B2-3 IV-V.
After sound hits the membranes at different amplitudes, the presternum sets up symmetrical vibration modes through bending and rocking. This effect helps the nervous system distinguish which side the sound is coming from. Because the presternum acts as an intertympanal bridge, the ITD is increased from 1.5 us to 55 us and the ILD is increased from less than one decibel to over 10 decibels. When looking at the nervous systems of flies, researchers found three auditory afferents.
In this case it is crucial to operate the cantilever at small, even sub-Ångström oscillation amplitudes. The frequency shift is then independent of the amplitude and is most sensitive to short- range forces, possibly yielding atomic scale contrast within a short tip- sample distance. The requirement for small amplitude is fulfilled with the qplus sensor. The qplus sensor-based cantilevers are much stiffer than regular silicon cantilevers, allowing stable operation in the negative force regime without instabilities.
ESPI fringes showing one of the vibration modes of a clamped square plate The optical arrangement is the same as for out-of-plane displacement above. The object is vibrated at a specific frequency. Those parts of the object which do not move will continue to be speckled. It can be shown that parts of the object which vibrate with amplitudes of nλ/4 have higher speckle contrast than those parts which vibrate at (n+½)λ/4.
Samuel's most important contribution in string theory was the development of off-shell conformal field theory. This allowed the computation of the scattering of string states when the on-shell condition E = mc + pc is analytically continued so that it no longer holds. The off-shell extension of string scattering amplitudes was thought to be impossible because of a no-go theorem. However, Samuel was able to use Witten's version of string field theory to achieve this result.
When such a beam is refocused by a lens, the transverse phase dependence is altered; this results in a different Gaussian beam. The electric and magnetic field amplitude profiles along any such circular Gaussian beam (for a given wavelength and polarization) are determined by a single parameter: the so- called waist . At any position relative to the waist (focus) along a beam having a specified , the field amplitudes and phases are thereby determinedSvelto, pp. 153–5. as detailed below.
Encounters between Neptune and Pluto-massed objects reduce the fraction of Kuiper belt objects in resonances. Velocity changes during the gravitational encounters with planetesimals that drive Neptune's migration cause small jumps in its semi-major axis, yielding a migration that is grainy instead of smooth. The shifting locations of the resonances produced by this rough migration increases the libration amplitudes of resonant objects, causing many to become unstable and escape from resonances. The observed ratio of hot classical objects to plutinos is best reproduced in simulations that include 1000–4000 Pluto-massed objects (i.e. large dwarf planets) or about 1000 bodies twice as massive as Pluto, making up 10–40% of the 20-Earth-mass planetesimal disk, with roughly 0.1% of this initial disk remaining in various parts of the Kuiper belt. The grainy migration also reduces the number of plutinos relative to objects in the 2:1 and 5:2 resonances with Neptune, and results in a population of plutinos with a narrower distribution of libration amplitudes.
These probability amplitudes can be represented as a complex number or equivalent vector—or, as Richard Feynman simply calls them in his book on QED, "arrows". For the probability that a certain event will happen, one sums the probability amplitudes for all of the possible ways in which the event can occur, and then takes the square of the length of the result. The probability amplitude for a photon from a monochromatic source to arrive at a certain final point at a given time, in this case, can be modeled as an arrow that spins rapidly until it is evaluated when the photon reaches its final point. For example, for the probability that a photon will reflect off of a mirror and be observed at a given point a given amount of time later, one sets the photon's probability amplitude spinning as it leaves the source, follows it to the mirror, and then to its final point, even for paths that do not involve bouncing off of the mirror at equal angles.
The spiral at the end of the spectrogram for "Windowlicker" A spectrogram of "Windowlicker" reveals a spiral at the end of the song. This spiral is more impressive when viewed with an X-Y scatter graph, X and Y being the amplitudes of the L and R channels, which shows expanding and contracting concentric circles and spirals. The effect was achieved through use of the Mac-based program MetaSynth. This program allows the user to insert a digital image as the spectrogram.
Particles interact in every way available; in fact, intermediate virtual particles are allowed to propagate faster than light. The probability of each final state is then obtained by summing over all such possibilities. This is closely tied to the functional integral formulation of quantum mechanics, also invented by Feynman—see path integral formulation. The naïve application of such calculations often produces diagrams whose amplitudes are infinite, because the short-distance particle interactions require a careful limiting procedure, to include particle self- interactions.
Light curve of semiregular variable star Betelgeuse Semiregular variable stars are giants or supergiants of intermediate and late spectral type showing considerable periodicity in their light changes, accompanied or sometimes interrupted by various irregularities. Periods lie in the range from 20 to more than 2000 days, while the shapes of the light curves may be rather different and variable with each cycle. The amplitudes may be from several hundredths to several magnitudes (usually 1-2 magnitudes in the V filter).
Through its location, Cluj County benefits from a moderate continental climate. In the mountain sector (Vlădeasa Massif and Muntele Mare), mean annual air temperature is 2 °C, and in the rest of the territory is 6 °C. Annual thermal amplitudes have values between 17–19 °C in the mountains and grow at 23–25 °C in hilly areas, plateaus and plains. Rainfall is distributed unevenly, with minimal amounts in Turda–Câmpia Turzii (about 550 mm) and maximum in Vlădeasa Massif (about 1,400 mm).
A TI-polaron (translation-invariant polaron) is a type of elementary quasiparticle in solid-state physics. The ground state of TI-polaron is a delocalized state of electron-phonon system: the probabilities of electron's occurrence at any point of a space are similar. Both the electron density and the amplitudes of phonon modes (renormalized by an interaction with the electron) are delocalized. The concept of a polaron potential well (formed by local phonons) in which the electron is localized, i.e.
It has been suggested that number-forms are a result of "cross-activation" between regions of the parietal lobe that are involved in numerical cognition and angular gyrus for spatial cognition (; ). Since the areas that process numerical and spatial representations are close to each other, this may contribute to the increased cross-activation. Compared to non-synesthetes, synesthetes display larger P3b amplitudes for month cues, but similar N1 and P3b responses for arrow (<\- or ->) and word (left or right) cues. ().
Such symmetries in quantum field theory (almost) always give rise to these generalized Ward–Takahashi identities which impose the symmetry on the level of the quantum mechanical amplitudes. This generalized sense should be distinguished when reading literature, such as Michael Peskin and Daniel Schroeder's textbook, from the original Ward–Takahashi identity. The detailed discussion below concerns QED, an abelian theory to which the Ward–Takahashi identity applies. The equivalent identities for non-abelian theories such as QCD are the Slavnov–Taylor identities.
When used in intraoperative monitoring, the latency and amplitude of the peak relative to the patient's post-intubation baseline is a crucial piece of information. Dramatic increases in latency or decreases in amplitude are indicators of neurological dysfunction. During surgery, the large amounts of anesthetic gases used can affect the amplitude and latencies of SSEPs. Any of the halogenated agents or nitrous oxide will increase latencies and decrease amplitudes of responses, sometimes to the point where a response can no longer be detected.
The amount of focusing in this way is not very great, and consequently the amplitudes of the betatron oscillations are large. Weak focusing requires a large vacuum chamber, and consequently big magnets. Most of the cost of a conventional synchrotron is the magnets. The PS was the first accelerator at CERN that made use of the alternating-gradient principle, also called strong focusing: quadrupole magnets are used to alternately focus horizontally and vertically many times around the circumference of the accelerator.
Electromagnetic fields are excited in the cavity by coupling in an RF source with an antenna. When the RF fed by the antenna is the same as that of a cavity mode, the resonant fields build to high amplitudes. Charged particles passing through apertures in the cavity are then accelerated by the electric fields and deflected by the magnetic fields. The resonant frequency driven in SRF cavities typically ranges from 200 MHz to 3 GHz, depending on the particle species to be accelerated.
Speech perception has also been analyzed through sinewave speech, a form of synthetic speech where the human voice is replaced by sine waves that mimic the frequencies and amplitudes present in the original speech. When subjects are first presented with this speech, the sinewave speech is interpreted as random noises. But when the subjects are informed that the stimuli actually is speech and are told what is being said, "a distinctive, nearly immediate shift occurs" to how the sinewave speech is perceived.
Diagnosis of convergence insufficiency is made by an eye care professional skilled in binocular vision dysfunctions, such as an orthoptist to rule out any organic disease. Convergence insufficiency characterized by one or more of the following diagnostic findings: Patient symptoms, High exophoria at near, reduced accommodative convergence/accommodation ratio, receded near point of convergence, low fusional vergence ranges and/or facility. Some patients with convergence insufficiency have concurrent accommodative insufficiency—accommodative amplitudes should therefore also be measured in symptomatic patients.
Gravity modes are confined to convectively stable regions, either the radiative interior or the atmosphere. The restoring force is predominantly buoyancy, and thus indirectly gravity, from which they take their name. They are evanescent in the convection zone, and therefore interior modes have tiny amplitudes at the surface and are extremely difficult to detect and identify. It has long been recognized that measurement of even just a few g modes could substantially increase our knowledge of the deep interior of the Sun.
This was innovative because prior to this the microwave fields were measured only externally. In this September experiment the permittivity and permeability of the microstructures (instead of external macrostructure) of the metamaterial samples were measured, as well as the scattering by the two- dimensional negative index metamaterials. This gave an average effective refractive index, which results in assuming homogeneous metamaterial. Employing this technique for this experiment, spatial mapping of phases and amplitudes of the microwave radiations interacting with metamaterial samples was conducted.
For ground measurements, velocimeters are necessary since the amplitudes are generally lower than the accelerometers sensitivity, especially at low frequency. Their corner frequency depends on the frequency range of interest but corner frequencies lower than 0.2 Hz are generally used. Geophones (generally 4.5 Hz corner frequency or greater) are generally not suited. For measurements in civil engineering structures, the amplitude is generally higher as well as the frequencies of interest, allowing the use of accelerometers or velocimeters with a higher corner frequency.
Bioelectromagnetics refers to the ability to study live cells, tissues, and organisms that produce electromagnetic fields. Bioelectromagnetism is mostly studied via electrophysiological techniques. Some of the electrophysiological monitoring methods such as electroencephalography (EEG) and electrocardiography (ECG or EKG) measure the electrical activity of the brain and heart via the installation of electrodes placed on the skin. Recorded evoked potential (EP) amplitudes tend to be low, ranging from tens of microvolts for EEG, millivolts for electromyography (EMG), and about 20 millivolts for ECG.
All were then given chord sequences that contained violations. Researchers found that those who had received prior training had greater P3b amplitudes in response to harmonic violations in musical sequences. This is presumably because those with training had more experience with the rules that govern harmonics, and therefore have a larger degree of expectancy for chord progressions and are more sensitive to deviance. There is also some evidence to suggest that in all subjects, P3b amplitude is distributed asymmetrically over the scalp.
Signals from neurons that integrate activity of various neurons, when taken together, can form a complete image stimulus. Noise also allows neurons to detect weak visual signals by processing the level of contrast of the image. Another positive use of synaptic noise is by involving frozen noise. Frozen noise refers to random current pulses of varying amplitudes being applied to the constant current input, and then maintaining this pattern so that it can be used to observe differences in other factors.
With waves of decreasing amplitude, phase-locking also decreased. Phase-locking was best in the 40–70 Hz range or in the 80–100 Hz range. Within a neuromast different afferents phase-locked best to waves of different frequencies and amplitudes, and they found no correlation between a unit's dynamic amplitude range and its ability to phase lock. Analysis of data revealed that wave amplitude of waves was encoded in the degree of phase- locking and in the afferent's firing rate.
The scale gives somewhat different values than the other scales. The reason for so many different ways to measure the same thing is that at different distances, for different hypocentral depths, and for different earthquake sizes, the amplitudes of different types of elastic waves must be measured. is the scale used for the majority of earthquakes reported (tens of thousands) by local and regional seismological observatories. For large earthquakes worldwide, the moment magnitude scale (MMS) is most common, although is also reported frequently.
In other words, the wave self-distorts. In doing so, other frequency components are introduced, which can be described by the Fourier series. This phenomenon is characteristic of a non-linear system, since a linear acoustic system responds only to the driving frequency. This always occurs but the effects of geometric spreading and of absorption usually overcome the self distortion, so linear behavior usually prevails and nonlinear acoustic propagation occurs only for very large amplitudes and only near the source.
The voltage drop across the shunt is proportional to its current flow. Both alternating currents (AC) and direct currents (DC) can be measured with the shunt resistor. The high performance coaxial shunt have been widely used for many applications fast rise-time transient currents and high amplitudes but, highly integrated electronic devices prefer low-cost surface mounted devices (SMDs), because of their small sizes and relatively low prices. The parasitic inductance present in the shunt affects high precision current measurement.
Quantum annealing can be compared to simulated annealing, whose "temperature" parameter plays a similar role to QA's tunneling field strength. In simulated annealing, the temperature determines the probability of moving to a state of higher "energy" from a single current state. In quantum annealing, the strength of transverse field determines the quantum-mechanical probability to change the amplitudes of all states in parallel. Analytical and numerical G. E. Santoro and E. Tosatti, "Optimization using quantum mechanics: quantum annealing through adiabatic evolution" J. Phys.
Principle of PAM: (1) original signal, (2) PAM signal, (a) amplitude of signal, (b) time Pulse-amplitude modulation (PAM), is a form of signal modulation where the message information is encoded in the amplitude of a series of signal pulses. It is an analog pulse modulation scheme in which the amplitudes of a train of carrier pulses are varied according to the sample value of the message signal. Demodulation is performed by detecting the amplitude level of the carrier at every single period.
The black dot plotted at represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample-rate. The other three dots indicate the frequencies and amplitudes of three other sinusoids that would produce the same set of samples as the actual sinusoid that was sampled. Undersampling of the sinusoid at is what allows there to be a lower-frequency alias. If the true frequency were , there would still be aliases at 0.6, 1.4, 1.6, etc.
Varying levels of dopamine are believed to influence the optimization of this filter system by providing expectations about the outcomes of an event. The ERN, then, serves as a beacon to highlight the violation of an expectation. Research on the occurrence of the feedback ERN shows evidence that this potential has larger amplitudes when violations of expectancy are large. In other words, if an event is not likely to happen, the feedback ERN will be larger if no error is detected.
Clinical Neurophysiology, 121, 386–391. Much in line with observations of traditional visual search paradigms, the application of P2 studies to language research has shown that the amplitude of the P2 is sensitive to both the orthographic combinability and phonological consistency (neighborhood sizes for similar appearing and similar sounding words) in the reading of Chinese phonograms. High combinability and consistency Chinese characters elicited lower P2 amplitudes than low combinability and low consistency characters.Hsu, C., Tsai, J., Lee, C., & Tzeng, O. (2009).
The two-phase resolver and related three-phase synchro are rotary position sensors which work over a full 360°. The primary is rotated within two or three secondaries at different angles, and the amplitudes of the secondary signals can be decoded into an angle. Unlike variable differential transformers, the coils, and not just the core, move relative to each other, so slip rings are required to connect the primary. Resolvers produce in-phase and quadrature components which are useful for computation.
When the electric field is applied from the CoCr to the LSMO electrode, the tunnel magnetoresistance (TMR) ratio is positive. When the direction of electric field is reversed, the TMR is negative. In both cases, large amplitudes of TMR on the order of 30% are found. Since a fully spin-polarized current flows from the half-metallic LSMO electrode, within the Julliere model, this sign change suggests a sign change in the effective spin polarization of the STO/CoCr interface.
An example is shown in the figure on the right with a water jet.Chanaud, R. C., MS Thesis, University of California, Los Angeles, 1960. The laminar two-dimensional jet amplifies small disturbances at the orifice to generate a vortex street. For this case, the flow speed, in terms of Reynolds number, was graphed against the disturbance frequency, in terms of the Strouhal number for a variety of disturbance amplitudes to reveal the region of instability as shown in the figure on the left.
Rapidly oscillating Ap stars have similar parameters to Delta Scuti variables, mostly being A- and F-type, but they are also strongly magnetic and chemically peculiar (hence the p spectral subtype). Their dense mode spectra are understood in terms of the oblique pulsator model: the mode's frequencies are modulated by the magnetic field, which is not necessarily aligned with the star's rotation (as is the case in the Earth). The oscillation modes have frequencies around 1500 μHz and amplitudes of a few mmag.
Experimental evidence of the Sabatier principle was first demonstrated by Balandin in 1960. The concept of catalytic resonance was proposed on dynamic interpretation of the Sabatier volcano reaction plot. As described, extension of either side of the volcano plot above the peak defines the timescales of the two rate-limiting phenomena such as surface reaction(s) or desorption. For binding energy oscillation amplitudes that extend across the volcano peak, the amplitude endpoints intersect the transiently accessible faster timescales of independent reaction phenomena.
The sum (blue) of two sine waves (red, green) is shown as one of the waves increases in frequency. The two waves are initially identical, then the frequency of the green wave is gradually increased by 25%. Constructive and destructive interference can be seen. This phenomenon is best known in acoustics or music, though it can be found in any linear system: "According to the law of superposition, two tones sounding simultaneously are superimposed in a very simple way: one adds their amplitudes".
The unconscious object relation of anorexia nervosa affect the probability amplitudes of the logical proposition "I am fat" . There is essentially a disruption to the perception. The Orch OR theory proposes that the human consciousness can be explained through "object reduction" which is a function by which the brain uses "microtubules" in the neurons to computate and regulate neural operations. Tubulins, existing as a subunit of microtubules, are related by quantum superposition and perform functions like that of a quantum computer.
Interference of left traveling (green) and right traveling (blue) waves in one dimension, resulting in final (red) wave Interference of waves from two point sources. Cropped tomography scan animation of laser light interference passing through two pinholes (side edges). The principle of superposition of waves states that when two or more propagating waves of same type are incident on the same point, the resultant amplitude at that point is equal to the vector sum of the amplitudes of the individual waves.Ockenga, Wymke.
If a crest of one wave meets a trough of another wave, then the amplitude is equal to the difference in the individual amplitudes—this is known as destructive interference. A magnified image of a coloured interference pattern in a soap film. The "black holes" are areas of almost total destructive interference (antiphase). Constructive interference occurs when the phase difference between the waves is an even multiple of (180°) , whereas destructive interference occurs when the difference is an odd multiple of .
The MHV were given a geometrical interpretation using Witten's twistor string theory which in turn inspired a technique of "sewing" MHV amplitudes together (with some off-shell continuation) to build arbitrarily complex tree diagrams. The rules for this formalism are called the CSW rules (after Freddy Cachazo, Peter Svrcek, Edward Witten). The CSW rules can be generalised to the quantum level by forming loop diagrams out of MHV vertices. There are missing pieces in this framework, most importantly the (++-) vertex, which is clearly non-MHV in form.
Rodeo slacklining is the art and practice of cultivating balance on a piece of rope or webbing draped slack between two anchor points, typically about apart and off the ground in the center. This type of very "slack" slackline provides a wide array of opportunities for both swinging and static maneuvers. A rodeo line has no tension in it, while both traditional slacklines and tightropes are tensioned. This slackness in the rope or webbing allows it to swing at large amplitudes and adds a different dynamic.
Tone proportions in Stockhausen's Elektronische Studie I (, citing the 1964 reprint of ). The fundamental hypothesis for Studie I was that its serial system should begin in the middle of the human auditory range and extend in both directions to the limits of pitch perception. Durations and amplitudes are inversely proportional to the distance from this central reference, so the sounds become both shorter and softer as they approach the upper and lower limits of pitch audibility . Sets of six values determine the entire work.
They are pulsating due to the entire star expanding and contracting. This produces a change in temperature along with radius, both of which factors cause the variation in luminosity. The pulsation depends on the mass and radius of the star and there is a well- defined relationship between period and luminosity (and colour). The very large visual amplitudes are not due to large luminosity changes, but due to a shifting of energy output between infra-red and visual wavelengths as the stars change temperature during their pulsations.
Chemotactic range fitting Chemotactic range fitting: chemotactic responses elicited by the ligand-receptor interactions are distinguished generally upon the optimal effective concentration(s) of the ligand. Nevertheless, correlation of the amplitude elicited and ratio of the responder cells compared to the total number are also characteristic features of the chemotactic signaling. Investigations of ligand families (e.g. amino acids or oligopeptides) proved that there is a fitting of ranges (amplitudes; number of responder cells) and chemotactic activities: chemoattractant moiety is accompanied with wide, while chemorepellent character narrow ranges.
In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which space-time itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to general relativity and quantum field theory, in particular to scattering amplitudes.
The resulting spectra (of the three cases) are similar, and each contains a dc component—a base sideband containing the modulating signal and phase modulated carriers at each harmonic of the frequency of the pulse. The amplitudes of the harmonic groups are restricted by a \sin x / x envelope (sinc function) and extend to infinity. The infinite bandwidth is caused by the nonlinear operation of the pulse-width modulator. In consequence, a digital PWM suffers from aliasing distortion that significantly reduce its applicability for modern communications system.
When the set is discrete (see above), vectors represented with the Hilbert space are just column vectors composed of "amplitudes" and indexed by . These are sometimes referred to as wave functions of a discrete variable . Discrete dynamical variables are used in such problems as a particle in an idealized reflective box and quantum harmonic oscillator. Components of the vector will be denoted by for uniformity with the previous case; there may be either finite of infinite number of components depending on the Hilbert space.
The magnitude for great earthquakes is often underestimated, at first. The standard teleseismic measure of the ‘size’ of an earthquake is the surface wave magnitude, , which has to be derived by definition from the surface waves with 20 second period. A more reliable and more modern scale is that of the moment magnitude, . Variations of the amplitudes recorded at different seismograph stations are due to many reasons, but the mean magnitude derived from reports by many stations that have recorded the earthquake should be fairly stable.
Old photographs may reveal the presence of a consistent head tilt (ocular torticollis) from an early age. Most people with congenital CN IV palsy have facial asymmetry due to the chronic head tilt. Other compensatory measures for congenital fourth nerve palsy are development of large vertical fusional amplitudes and lack of subjective symptoms of torsion, even in the presence of great ocular rotation. Congenital fourth nerve palsy may remain undetected until adulthood, when intermittent diplopia may arise, due to decompensated ability to overcome the vertical deviation.
A spectrogram of a violin playing a note and then a perfect fifth above it. The shared partials are highlighted by the white dashes. Whenever two different pitches are played at the same time, their sound waves interact with each other – the highs and lows in the air pressure reinforce each other to produce a different sound wave. Any repeating sound wave that is not a sine wave can be modeled by many different sine waves of the appropriate frequencies and amplitudes (a frequency spectrum).
In 2007 an ESR experiment reported the observation of unexpected modulation in time of the rate of electron capture decays of highly ionized heavy atoms — 140Pr58+, which have a lifetime of 3.39 min. Such findings were soon repeated by the same group, and were extended to include the decay of 142Pm60+ (lifetime 40.5 s). The oscillations in decay rate had time periods near to 7 s and amplitudes of about 20%. Such a phenomenon had not been previously observed, and was difficult to understand.
There are also mechanoreception systems that use calcium inflow to physically affect certain proteins and move them to close or open channels. Functionally, it is highly possible that adaptation may enhance the limited response range of neurons to encode sensory signals with much larger dynamic ranges by shifting the range of stimulus amplitudes. Also, in neural adaptation there is a sense of returning to baseline from a stimulated response. Recent work suggests that these baseline states are actually determined by long-term adaptation to the environment.
Among his notable students are Mario Bertoncini, Konrad Boehmer, Karl Gottfried Brunotte, Johannes Fritsch, Annea Lockwood, Tomás Marco, Pierre Mariétan, Zoltán Pongrácz, Kees van Prooijen, Atli Heimir Sveinsson, Miguel Ángel Coria and Jan Vriend. His sound synthesis program SSP (started 1971) is based on the representation of sound as a sequence of amplitudes in time. It makes use of the methods of aleatoric and groupwise selection of elements employed in Project 1 and Project 2. He continued to produce electronic works (Terminus 2, the Funktionen series).
Simplified timing diagram for two-dimensional-Fourier-transform (2DFT) Spin Echo (SE) pulse sequence In the timing diagram, the horizontal axis represents time. The vertical axis represents: (top row) amplitude of radio frequency pulses; (middle rows) amplitudes of the three orthogonal magnetic field gradient pulses; and (bottom row) receiver analog-to-digital converter (ADC). Radio frequencies are transmitted at the Larmor frequency of the nuclide to be imaged. For example, for 1H in a magnetic field of 1 T, a frequency of 42.5781 MHz would be employed.
Functional magnetic resonance imaging adaptation (FMRIa) is a method of functional magnetic resonance imaging that reads the brain changes occurring in response to long exposure to evocative stimulus. If Stimulus 1 (S1) excites a certain neuronal population, repeated exposure to S1 will result in subsequently attenuated responses. This adaptation may be due to neural fatigue or coupled hemodynamic processes. However, when S1 is followed by a unique stimulus, S2, the response amplitudes should not be attenuated as a fresh sub-population of neurons is excited.
The job of a player in a game is to choose a strategy. In terms of bits this means that the player has to choose between 'flipping' the bit to its opposite state or leaving its current state untouched. When extended to the quantum domain this implies that the player can rotate the qubit to a new state, thus changing the probability amplitudes of each of the base states. Such operations on the qubits are required to be unitary transformations on the initial state of the qubit.
The function of the antagonist muscle contraction is believed to control the amplitude and timing of ballistic movements. Antagonist muscle contraction may serve to prevent injury to joints by preventing the limb from overextending itself and also function to control the distance and time the limb is being moved. Experiments involving ballistic movement of small amplitudes show a marked increase in antagonist muscle activation and experiments where distance moved is not controlled antagonist muscle activation was decreased or absent.Zehr, E.P. and Sale, D.G. (1994).
While usually connected to a barge, Rautaruukki is also capable of operating independently. However, the low metacentric height of the pusher, only , results in large roll amplitudes and pitching, making the vessel very uncomfortable in severe weather. For this reason short transit journeys without a barge are done only when it is absolutely necessary. The Finnpusku system uses a unique rigid coupling system, Wärtsilä Marine Locomotive, which consists of two hydraulic locking pins, one on each side of the pusher, and one fixed pin in the bow.
Light that had been converted from linear to elliptical or circular polarization (e.g., by passage through a crystal lamina, or by total internal reflection) was described as partly or fully "depolarized" because of its behavior in an analyzer. After Fresnel, the defining feature of polarized light was that the perpendicular components of vibration had a fixed ratio of amplitudes and a fixed difference in phase. By that definition, elliptically or circularly polarized light is fully polarized although it cannot be fully suppressed by an analyzer alone.
In: Neuroethology and Behavioral Physiology, edited by Huber, F. and Markl, H. Berlin: Springer-Verlag, pp. 332–353 ; Percussion: Percussion, or drumming, can produce both short-and long-distance vibrational cues. Direct percussion of the substrate can yield a much stronger signal than an airborne vocalization that couples with the substrate, however, the strength of the percussive cue is related directly to the mass of the animal producing the vibration. Large size is often associated with greater source amplitudes, leading to a greater propagation range.
In 2008 and 2009, hydrophones recorded a cyclical activity, with bursts of acoustic signals lasting one to several minutes separated by pauses less than a minute long. Each burst consisted of hundreds of pulses, each several tenths of a second long. An intense acoustic signal recorded between 12 and 16 August 2009 exhibited high amplitudes and low frequencies, with two distinct pulses on 14 August 2009. This signal has been interpreted as an intense explosive eruption which led to the landslide on 14 August 2009.
The light curves of intrinsic variable stars with large amplitudes have been known for centuries to exhibit behavior that goes from extreme regularity, as for the classical Cepheids and the RR Lyrae stars, to extreme irregularity, as for the so-called Irregular variables. In the Population II stars this irregularity gradually increases from the low period W Virginis variables through the RV Tauri variables into the regime of the semiregular variables. Low-dimensional chaos in stellar pulsations is the current interpretation of this established phenomenon.
In contrast, electromagnetic waves require no medium, but can still travel through one. One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects. For example, waves on the surface of a body of water break when this dimensionless amplitude exceeds 1, resulting in a foam on the surface and turbulent mixing.
Traditional active cancellation techniques for tremor reduction use electrical, hydraulic, or pneumatic systems to actuate an object in the direction opposite to the disturbance. However, these systems are limited due to the large infrastructure required to produce large amplitudes of power at human tremor frequencies. SMAs have proven to be an effective method of actuation in hand-held applications, and have enabled a new class active tremor cancellation devices. One recent example of such device is the Liftware spoon, developed by Verily Life Sciences subsidiary Lift Labs.
AWGN Contributions in the Phasor Domain In modern communication systems, bandlimited AWGN cannot be ignored. When modeling bandlimited AWGN in the phasor domain, statistical analysis reveals that the amplitudes of the real and imaginary contributions are independent variables which follow the Gaussian distribution model. When combined, the resultant phasor's magnitude is a Rayleigh distributed random variable while the phase is uniformly distributed from 0 to 2π. The graph to the right shows an example of how bandlimited AWGN can affect a coherent carrier signal.
In neurons, the rheobase is defined as the smallest injected step current, of infinite duration, that results in one action potential. In practice, there are several challenges of measuring the rheobase. The general protocol is to inject currents of various amplitudes, observe if any action potentials were produced, and then further refine the injected current magnitude until the boundary between spiking and non-spiking behavior is identified. Duration Because it is not possible to wait an infinite amount of time, trial currents are injected for finite durations.
In the middle figure, the two orthogonal components have the same amplitudes and are 90° out of phase. In this case, one component is zero when the other component is at maximum or minimum amplitude. There are two possible phase relationships that satisfy this requirement: the x component can be 90° ahead of the y component or it can be 90° behind the y component. In this special case, the electric vector traces out a circle in the plane, so this polarization is called circular polarization.
Furthermore, it was found that photoperiodic conditions affect the expression patterns and/or amplitudes of this gene. In Sesamia nonagrioides, this Sncyc gene is associated with diapause. This is due to the fact that under short day (diapause conditions) the photoperiodic signal alters the accumulation of mRNA. However, in Drosophila, this gene does not oscillate or change in expression patterns in response to photoperiod, therefore suggesting that this species may be useful in further studying the molecular control of circadian and photoperiodic clocks in insects.
The Heaviside step potential mainly serves as an exercise in introductory quantum mechanics, as the solution requires understanding of a variety of quantum mechanical concepts: wavefunction normalization, continuity, incident/reflection/transmission amplitudes, and probabilities. A similar problem to the one considered appears in the physics of normal-metal superconductor interfaces. Quasiparticles are scattered at the pair potential which in the simplest model may be assumed to have a step-like shape. The solution of the Bogoliubov-de Gennes equation resembles that of the discussed Heaviside-step potential.
Grassmann manifolds have found application in computer vision tasks of video-based face recognition and shape recognition.Pavan Turaga, Ashok Veeraraghavan, Rama Chellappa: Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision, CVPR 23–28 June 2008, IEEE Conference on Computer Vision and Pattern Recognition, 2008, , pp. 1–8 (abstract, full text) They are also used in the data-visualization technique known as the grand tour. Grassmannians allow the scattering amplitudes of subatomic particles to be calculated via a positive Grassmannian construct called the amplituhedron.
The most common use of the propagator is in calculating probability amplitudes for particle interactions using Feynman diagrams. These calculations are usually carried out in momentum space. In general, the amplitude gets a factor of the propagator for every internal line, that is, every line that does not represent an incoming or outgoing particle in the initial or final state. It will also get a factor proportional to, and similar in form to, an interaction term in the theory's Lagrangian for every internal vertex where lines meet.
João Miguel Augusto Penedones Fernandes is a Portuguese theoretical physicist who has done significant work in the area of quantum field theory. He is currently a tenure track professor at the École Polytechnique Fédérale de Lausanne. One of his most important contributions is a conjecture about the conditions upon which a conformal field theory has a gravity dual, later proved by A. Liam Fitzpatrick and Jared Kaplan. Correlation functions of local operators living on the boundary of AdS are the natural analogues of scattering amplitudes.
The eclipses have been questioned many times, but special observations are still been made at the times of predicted eclipses. The semi-regular variations have been classified as type SRa, indicating relatively predictable periodicity with some variations in amplitude and light curve shape. These types of variable are considered to be very similar to Mira variables, but with smaller amplitudes. Many long-period variables show long secondary periods, typically ten times longer than the main period, but these changes have not been detected for η Geminorum.
A visual field test can differentiate between whether the reduced visual acuity is centered on the optic nerve or the fundus. Once a neurological problem has, therefore, been ruled out, the disorder's reduced visual acuity without visible fundus abnormalities may be misdiagnosed as optic neuritis, dominant optic atrophy, amblyopia, or nonorganic visual disorder. The combination of weak amplitudes in the mfERG with no visible fundus abnormalities then rules out other explanations. For example, OMD presents negative for a full-field ERG while retinitis pigmentosa presents abnormal.
Class 2 waves owe their existence to the Coriolis effect and can only exist for periods larger than 12 hours. Tidal waves can be either internal (travelling waves) with positive eigenvalues (or equivalent depth) which have finite vertical wavelengths and can transport wave energy upward, or external (evanescent waves) with negative eigenvalues and infinitely large vertical wavelengths meaning that their phases remain constant with altitude. These external wave modes cannot transport wave energy, and their amplitudes decrease exponentially with height outside their source regions.
Peak-to-peak amplitude (abbreviated p–p) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope. Peak-to-peak is a straightforward measurement on an oscilloscope, the peaks of the waveform being easily identified and measured against the graticule. This remains a common way of specifying amplitude, but sometimes other measures of amplitude are more appropriate.
With waveforms containing many overtones, complex transient timbres can be achieved by assigning each overtone to its own distinct transient amplitude envelope. Unfortunately, this has the effect of modulating the loudness of the sound as well. It makes more sense to separate loudness and harmonic quality to be parameters controlled independently of each other. To do so, harmonic amplitude envelopes are frame-by-frame normalized to become amplitude proportion envelopes, where at each time frame all the harmonic amplitudes will add to 100% (or 1).
The analytic connection Oehme found between particle and antiparticle amplitudes is the first example of a fundamental feature of local quantum field theory: the crossing property. It is proven here, in a non-perturbative setting, on the basis of the analytic properties of amplitudes which are a consequence of locality and spectrum, like the dispersion relations. For generalizations, one still relies mostly on perturbation theory. For the purpose of using the powerful methods of the theory of functions of several complex variables for the proof of non-forward dispersion relations, and for analytic properties of other Greens functions, Oehme formulated and proved a fundamental theorem which he called the “Edge of the Wedge Theorem” (“Keilkanten Theorem”). This work was done mainly in the Fall of 1956 at the Institute for Advanced Study in collaboration with Hans- Joachim Bremermann and John G. Taylor. H. J. Bremermann, R. Oehme and J.G. Taylor, “UNE DEMONSTRATION POSSIBLE DES RELATIONS DE DISPERSION” presented at Les Problemes Mathematiques de la Theorie Quantique des Champs, Colloques Internationaux du CNRS, Lille, France, 3-8 Juin 1957, printed in Colloques Internationaux du Centre National de la Recherche Scientifique, LXXV, 169 (1959).
Quantum topology is a branch of mathematics that connects quantum mechanics with low-dimensional topology. Dirac notation provides a viewpoint of quantum mechanics which becomes amplified into a framework that can embrace the amplitudes associated with topological spaces and the related embedding of one space within another such as knots and links in three-dimensional space. This bra–ket notation of kets and bras can be generalised, becoming maps of vector spaces associated with topological spaces that allow tensor products. Topological entanglement involving linking and braiding can be intuitively related to quantum entanglement.
Traditionally, the bottom of the diagram is the past and the top the future; other times, the past is to the left and the future to the right. When calculating correlation functions instead of scattering amplitudes, there is no past and future and all the lines are internal. The particles then begin and end on little x's, which represent the positions of the operators whose correlation is being calculated. Feynman diagrams are a pictorial representation of a contribution to the total amplitude for a process that can happen in several different ways.
Light curve of Mira variable χ Cygni Mira variables are AGB red giants. Over periods of many months they fade and brighten by between 2.5 and 11 magnitudes, a 6 fold to 30,000 fold change in luminosity. Mira itself, also known as Omicron Ceti (ο Cet), varies in brightness from almost 2nd magnitude to as faint as 10th magnitude with a period of roughly 332 days. The very large visual amplitudes are mainly due to the shifting of energy output between visual and infra-red as the temperature of the star changes.
Conductor gallop is the high-amplitude, low-frequency oscillation of overhead power lines due to wind. The movement of the wires occurs most commonly in the vertical plane, although horizontal or rotational motion is also possible. The natural frequency mode tends to be around 1 Hz, leading the often graceful periodic motion to also be known as conductor dancing. The oscillations can exhibit amplitudes in excess of a metre, and the displacement is sometimes sufficient for the phase conductors to infringe operating clearances (coming too close to other objects), and causing flashover.
In the beginning the EEG recordings were made on paper and changes measured visually, scored by ruler and calipers. By the 1960s, electronic analyzers of 10 second epochs measured changes in "power." Digital computer methods using period analysis, power spectral density, and amplitude analyses followed. The quantitative changes in mean frequency, mean amplitudes, percent time delta (1–3 Hz), theta (3.5 - 7.5 Hz), alpha (8-12.5 Hz), beta1 (13–21 Hz), and beta2 (>21 Hz), and the presence of bursts in 10-second epochs were commonly used to identify patterns.
It was introduced in 1934 and by the 1940s EEG recordings during the treatment showed the classic sequence of epileptic seizure events recognized as the "grand mal seizure." In the 1950s, recordings of interseizure records, on days after an induced seizure, showed progressive slowing of mean frequencies and increased amplitudes during the treatment course. These changes were necessary accompaniments of effective courses of treatment—patients without progressive slowing failed to recover. In the early 1980s, commercial ECT devices were equipped with a 2-channel EEG recorder that measured the EEG characteristics and duration.
The concept of amplitudes described above is relevant to quantum state vectors. It is also used in the context of unitary operators that are important in the scattering theory, notably in the form of S-matrices. Whereas moduli of vector components squared, for a given vector, give a fixed probability distribution, moduli of matrix elements squared are interpreted as transition probabilities just as in a random process. Like a finite-dimensional unit vector specifies a finite probability distribution, a finite-dimensional unitary matrix specifies transition probabilities between a finite number of states.
The electrical signal from the detector is recorded by means of a time to digital converter (TDC) or a fast analog-to-digital converter (ADC). TDC is mostly used in combination with orthogonal-acceleration (oa)TOF instruments. Time-to-digital converters register the arrival of a single ion at discrete time "bins"; a combination of threshold triggering and constant fraction discriminator (CFD) discriminates between noise and ion arrival events. CFD converts a few nanosecond long Gaussian-shaped electrical pulses of different amplitudes generated on the MCP's anode into common-shape pulses (e.g.
Neutron spin echo techniques achieve very high energy resolution in combination with very high neutron intensity by means of a decoupling of the energy resolution of the instrument from the wavelength spread of the neutrons. The energy transfer of the neutrons is encoded in their polarization and not in the change of the wavelength of the scattered neutrons. The final neutron polarization provides the (normalized) intermediate scattering function S(Q,τ), providing direct information on relaxation processes, activation energies, and the amplitudes of dynamic processes in the samples under investigation.
The scattering amplitude can thus be thought of as the volume of a certain polytope, the positive Grassmannian, in momentum twistor space. When the volume of the amplituhedron is calculated in the planar limit of N = 4 D = 4 supersymmetric Yang–Mills theory, it describes the scattering amplitudes of subatomic particles. The amplituhedron thus provides a more intuitive geometric model for calculations with highly-abstract underlying principles. The twistor-based representation provides a recipe for constructing specific cells in the Grassmannian which assemble to form a positive Grassmannian, i.e.
Nothing is certain until the superimposed waveforms "collapse". At that instant an electron shows up somewhere in accordance with the probability that is the square of the absolute value of the sum of the complex-valued amplitudes of the two superimposed waveforms. The situation there is already very abstract. A concrete way of thinking about entangled photons, photons in which two contrary states are superimposed on each of them in the same event, is as follows: Imagine that we have two color-coded states of photons: one state labeled blue and another state labeled red.
The study of vibrations in bikes includes its causes, such as engine balance, wheel balance, ground surface, and aerodynamics; its transmission and absorption; and its effects on the bike, the rider, and safety. An important factor in any vibration analysis is a comparison of the natural frequencies of the system with the possible driving frequencies of the vibration sources. A close match means mechanical resonance that can result in large amplitudes. A challenge in vibration damping is to create compliance in certain directions (vertically) without sacrificing frame rigidity needed for power transmission and handling (torsionally).
The first flat lens used a thin wafer of silicon 60 nanometers thick coated with concentric rings of v-shaped gold nanoantennas to produce photographic images. The antennas were systematically arranged on the silicon wafer and refract the light so that it all ends up on a single focal plane, a so-called artificial refraction process. The antennas were surrounded by an opaque silver/titanium mask that reflected all light that did not strike the antennas. Varying the arm lengths and angle provided the required range of amplitudes and phases.
The towing tank can also be equipped with a wave generator to carry out seakeeping tests, either by simulating natural (irregular) waves or by exposing the model to a wave packet that yields a set of statistics known as response amplitude operators (acronym RAO), that determine the ship's likely real-life sea-going behavior when operating in seas with varying wave amplitudes and frequencies (these parameters being known as sea states). Modern seakeeping test facilities can determine these RAO statistics, with the aid of appropriate computer hardware and software, in a single test.
Stevens claims that coarticulation causes only limited and moreover systematic and thus predictable variation in the signal which the listener is able to deal with. Within this model therefore, what is called the lack of invariance is simply claimed not to exist. Landmarks are analyzed to determine certain articulatory events (gestures) which are connected with them. In the next stage, acoustic cues are extracted from the signal in the vicinity of the landmarks by means of mental measuring of certain parameters such as frequencies of spectral peaks, amplitudes in low-frequency region, or timing.
She developed the mathematical theory of toroidal oscillations in fully relativistic spherical stellar models and worked on homodyne detection. Her work considered two- photon physics using quadrature phase amplitudes, a technique now known as the Caves–Schumaker formalism, which has become a standard mathematical tool in optomechanics, quantum optics and gravitational wave science. She worked at CalTech as a postdoctoral research fellow for a year, before moving to the Jet Propulsion Laboratory in 1986. In 1988 she was awarded the Maria Goeppert-Mayer Award for her contributions to quantum optics.
Image showing the outer ear, middle ear, and inner ear, and how sound is conducted through the outer ear, to the ossicles of the middle ear, through to the inner ear and the cochlea, where the organ of Corti sits. The function of the organ of Corti is to change (transduce) auditory signals and minimise the hair cells' extraction of sound energy. It is the auricle and middle ear that act as mechanical transformers and amplifiers so that the sound waves end up with amplitudes 22 times greater than when they entered the ear.
Ion pumps influence the action potential only by establishing the relative ratio of intracellular and extracellular ion concentrations. The action potential involves mainly the opening and closing of ion channels not ion pumps. If the ion pumps are turned off by removing their energy source, or by adding an inhibitor such as ouabain, the axon can still fire hundreds of thousands of action potentials before their amplitudes begin to decay significantly. In particular, ion pumps play no significant role in the repolarization of the membrane after an action potential.
A dielectric resonator is a piece of dielectric (nonconductive) material, usually ceramic, that is designed to function as a resonator for radio waves, generally in the microwave and millimeter wave bands. The microwaves are confined inside the resonator material by the abrupt change in permittivity at the surface, and bounce back and forth between the sides. At certain frequencies, the resonant frequencies, the microwaves form standing waves in the resonator, oscillating with large amplitudes. Dielectric resonators generally consist of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor.
A driving wheel on a steam locomotive showing the crescent-shaped balance weight. This section is an introduction to the balancing of two steam engines connected by driving wheels and axles as assembled in a railway locomotive. The effects of unbalanced inertias in a locomotive are briefly shown by describing measurements of locomotive motions as well as deflections in steel bridges. These measurements show the need for various balancing methods as well as other design features to reduce vibration amplitudes and damage to the locomotive itself as well as to the rails and bridges.
In quantum mechanics, the system does not follow a single path whose action is stationary, but the behavior of the system depends on all imaginable paths and the value of their action. The action corresponding to the various paths is used to calculate the path integral, that gives the probability amplitudes of the various outcomes. Although equivalent in classical mechanics with Newton's laws, the action principle is better suited for generalizations and plays an important role in modern physics. Indeed, this principle is one of the great generalizations in physical science.
This allows for multiple parallel threads to be used for the DBF. ;Sample adaptive offset The SAO filter is applied after the DBF and is designed to allow for better reconstruction of the original signal amplitudes by applying offsets stored in a lookup table in the bitstream. Per CTB the SAO filter can be disabled or applied in one of two modes: edge offset mode or band offset mode. The edge offset mode operates by comparing the value of a sample to two of its eight neighbors using one of four directional gradient patterns.
Jean-Claude Risset achieved the same effect using gliding tones instead, so that a single tone appeared to glide up or down endlessly in pitch. Circularity effects based on this principle have been produced in orchestral music and electronic music, by having multiple instruments playing simultaneously in different octaves. Normann et al. PDF Document showed that pitch circularity can be created using a bank of single tones; here the relative amplitudes of the odd and even harmonics of each tone are manipulated so as to create ambiguities of height.
A Stoneley wave is a type of boundary wave (or interface wave) that propagates along a solid-fluid boundary or, under specific conditions, also along a solid-solid boundary. Amplitudes of Stoneley waves have their maximum values at the boundary between the two contacting media and decay exponentially towards the depth of each of them. These waves can be generated along the walls of a fluid-filled borehole, being an important source of coherent noise in vertical seismic profiles (VSP) and making up the low frequency component of the source in sonic logging.Schlumberger Oilfield Glossary.
During assessment, the aim of PAIVM is to reproduce patient symptoms, and assess the endfeel of cervical movement, quality of resistance, behaviour of pain throughout the range of movement, and observe any muscle spasm. A posterior to anterior force of varying strength is applied by the therapist either centrally onto the spinous process, or unilaterally on either the left or right articular pillar. As a treatment technique, pain is treated by oscillations of small amplitude short of resistance, whilst stiffness is treated by larger amplitudes 50% into resistance.Darlene Hertling, Randolph M. Kessler, (2006).
The Virtual Hammock effect is achieved by intentionally manipulating the passing point by shifting the maximum amplitudes of sound waveforms that are directed into each ear. By way of example, consider a sinusoidal tone of 262 Hz, which corresponds approximately to middle C on a piano, played in one ear, while a slightly different frequency tone of 260 Hz is played to the other ear. When one listens to only one side, that person will hear a constant tone. However, when listening to both sides simultaneously, the hearer perceives the sound of a rhythmic pulse.
In the field of optimization, linear programming studies the maxima and minima of linear functions; these maxima and minima occur on the boundary of an n-dimensional polytope. In linear programming, polytopes occur in the use of generalized barycentric coordinates and slack variables. In twistor theory, a branch of theoretical physics, a polytope called the amplituhedron is used in to calculate the scattering amplitudes of subatomic particles when they collide. The construct is purely theoretical with no known physical manifestation, but is said to greatly simplify certain calculations.
The most commonly occurring vibration frequency of calibrators is 159.2 Hz, which is equivalent to a radian frequency of 1000 rad/s. The vibration displacement, velocity and acceleration of sinusoidal signals are connected with each other through the factor of the radian frequency. Advantageously, at 1000 rad/s the numerical values of the amplitudes for all three vibration quantities are the same. For example, a vibration acceleration of 10 m/s² at 159.2 Hz is equivalent to a vibration velocity of 10 mm/s and a vibration displacement of 10 μm.
It has the highest Finnish-Swedish ice class, 1A Super, which means that the pusher is designed to operate in difficult ice conditions both alone and when coupled to a barge mainly without icebreaker assistance. While usually connected to a barge, Steel is also capable of operating independently. However, the low metacentric height of the pusher, only , results in large roll amplitudes and pitching, making the vessel very uncomfortable in severe weather. For this reason short transit journeys without a barge are done only when it is absolutely necessary.
The white noise that is introduced by the radio is then also de-emphasized at the higher frequencies (where it is most noticeable) along with the pre-emphasized program, making the noise less audible. Tape recorders used the same trick to reduce "tape hiss" while maintaining fidelity. On the other hand, in the production of vinyl records, a filter is used to reduce the amplitude of low frequencies which otherwise produce large amplitudes on the tracks of a record. Then the groove can take up less physical space, fitting more music on the record.
Chemotactic range fitting Chemotactic responses elicited by the ligand-receptor interactions are, in general, distinguished upon the optimal effective concentration(s) of the ligand. Nevertheless, correlation of the amplitude elicited and ratio of the responder cells compared to the total number are also characteristic features of the chemotactic signaling. Investigations of ligand families (e.g., amino acids or oligo peptides) proved that there is a fitting of ranges (amplitudes; number of responder cells) and chemotactic activities: Chemoattractant moiety is accompanied by wide ranges, whereas chemorepellent character by narrow ranges.
Light curve of a Delta Cephei variable, showing the regular light curve formed by intrinsic stellar pulsations Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.
To achieve higher selectivity while applying lower stimulation amplitudes, it is recommended that both cathode and anode are in the vicinity of the nerve that is stimulated. The drawbacks of the implanted electrodes are they require an invasive surgical procedure to install, and, as is the case with every surgical intervention, there exists a possibility of infection following implantation. Typical stimulation protocols used in clinical FES involves trains of electric pulses. Biphasic, charged balanced pulses are employed as they improve the safety of electrical stimulation and minimize some of the adverse effects.
Resonance is the tendency of a system to oscillate at larger amplitudes at certain frequencies, known as the system's natural frequencies. At these frequencies, even relatively small periodic driving forces can produce large amplitude vibrations, because the system stores energy. For example, a child using a swing realizes that if the pushes are properly timed, the swing can move with a very large amplitude. The driving force, in this case the child pushing the swing, exactly replenishes the energy that the system loses if its frequency equals the natural frequency of the system.
MFCC values are not very robust in the presence of additive noise, and so it is common to normalise their values in speech recognition systems to lessen the influence of noise. Some researchers propose modifications to the basic MFCC algorithm to improve robustness, such as by raising the log-mel-amplitudes to a suitable power (around 2 or 3) before taking the DCT (Discrete Cosine Transform), which reduces the influence of low-energy components.V. Tyagi and C. Wellekens (2005), , in Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05).
Instead of a model-dependent treatment in terms of constituent quarks, hadrons are represented by their interpolating quark currents taken at large virtualities. The correlation function of these currents is introduced and treated in the framework of the operator product expansion (OPE), where the short and long-distance quark-gluon interactions are separated. The former are calculated using QCD perturbation theory, whereas the latter are parametrized in terms of universal vacuum condensates or light-cone distribution amplitudes. The result of the QCD calculation is then matched, via dispersion relation, to a sum over hadronic states.
For each string there should be a spot relative to the curve of the bridge where optimum sound quality is found. Within the area of optimum resonance and sustain, a little play should be available for further fine-tuning, in which the jiva can hardly be seen to move. Staying with optics, shifting the jiva would be similar to using the manual fine focus on a camera. Experienced 'javari-makers' will agree that the 'javari' has to be made specific to certain string lengths, gauges and pitches and certain amplitudes.
To complete his experiments, he had to make his own glassware, creating test tubes with the required elliptical cross-sections. He went beyond the original task, incorporating improvements into both Rayleigh's theory and his method, by taking into account the viscosity of the water, and by working with finite amplitudes instead of just infinitesimal ones. His essay, which he submitted at the last minute, won the prize. He later submitted an improved version of the paper to the Royal Society in London for publication in the Philosophical Transactions of the Royal Society.
Most of these variations can be accounted for by the orbit of the two stars and material being transferred from the primary to the secondary, with the gas being involved in partial eclipses and possible also a partial eclipse of the primary star. The two stars are also distorted into ellipsoidal shapes by their gravity and vary in brightness as they rotate. In addition to the orbital variations, two pulsation modes have been observed with amplitudes of a few thousandths of a magnitude and periods of 0.77 and 1.42 days.
Linear polarization diagram Linear Circular polarization diagram Circular Elliptical polarization diagram Elliptical polarization In the leftmost figure above, the x and y components of the light wave are in phase. In this case, the ratio of their strengths is constant, so the direction of the electric vector (the vector sum of these two components) is constant. Since the tip of the vector traces out a single line in the plane, this special case is called linear polarization. The direction of this line depends on the relative amplitudes of the two components.
There is a small amount of andesite in the lavas from the field, mostly erupted from monogenetic vents or Larch Mountain. Sometimes, Boring Lava overlaps with volcaniclastic conglomerate from other Cascade eruptions in Multnomah County and the northern part of Clackamas County. The Boring Lava also contains tuff, cinder, and scoria; it is characterized by plagioclase laths that show a pilotaxitic texture with spaces between them that show a diktytaxitic texture. The Boring Lava exposures show aeromagnetic anomalies with short wavelengths and high amplitudes suggestive of their relatively young geological ages.
Aerial view of the ESO/NAOJ/NRAO ALMA construction site. In the 1980s the aperture synthesis interferometric imaging technique was extended to visible light and infrared astronomy by the Cavendish Astrophysics Group, providing the first very high resolution images of nearby stars. In 1995 this technique was demonstrated on an array of separate optical telescopes for the first time, allowing a further improvement in resolution, and allowing even higher resolution imaging of stellar surfaces. Software packages such as BSMEM or MIRA are used to convert the measured visibility amplitudes and closure phases into astronomical images.
In general, each of these frequency components will have a different amplitude and phase, which depends on the specific non-linear function being used, and also on the amplitudes and phases of the original input components. More generally, given an input signal containing an arbitrary number N of frequency components f_a, f_b, \ldots, f_N, the output signal will contain a number of frequency components, each of which may be described by :k_a f_a + k_b f_b + \cdots + k_N f_N,\, where the coefficients k_a, k_b, \ldots, k_N are arbitrary integer values.
Hearn attended the University of Adelaide for his bachelor's degree, graduating in 1958. He attended the University of Cambridge for his PhD in theoretical physics and graduated in 1962. From 1962 to 1964, he was a research associate in physics at Stanford University, returning as an assistant professor and Sloan Foundation Fellow in 1965 after a year at the Rutherford Laboratory in England. While at Stanford, he worked with Sidney Drell and formulated the Gerasimov-Drell-Hearn sum rule for connecting the Compton scattering amplitudes to the inclusive photoproduction cross sections in particle physics.
R. (2000). "The Past and Future of S-Matrix Theory". In 1961, Geoffrey Chew and Steven Frautschi recognized that mesons had straight line Regge trajectories (in their scheme, spin is plotted against mass squared on a so-called Chew–Frautschi plot), which implied that the scattering of these particles would have very strange behavior--it should fall off exponentially quickly at large angles. With this realization, theorists hoped to construct a theory of composite particles on Regge trajectories, whose scattering amplitudes had the asymptotic form demanded by Regge theory.
The spectrum then develops hydrogen emission lines. For several days either side of maximum brightness, the spectrum becomes a relatively normal class K. RU Cam remained a somewhat unusual W Virginis variable until 1964, when the relatively regular pulsation of about 1 magnitude almost entirely stopped. Since then the pulsations have varied from cycle to cycle, with amplitudes changing from several tenths of a magnitude to almost zero. The light curve has a more sinusoidal shape than when it was pulsating at full amplitude and the period changes erratically between 17.4 and 26.6 days.
There is an infinite number of other intermediate processes in which more and more photons are absorbed and/or emitted. For each of these possibilities, there is a Feynman diagram describing it. This implies a complex computation for the resulting probability amplitudes, but provided it is the case that the more complicated the diagram, the less it contributes to the result, it is only a matter of time and effort to find as accurate an answer as one wants to the original question. This is the basic approach of QED.
Instead, two other periodicities were detected at 8.78 and 40.0 days, with amplitudes below the HET observational errors. The 40-day variation coincides with the rotational period of the star and is therefore caused by activity, but the shorter-period variation is not explained by activity and is therefore caused by a planet. Its semi-amplitude of 4.1 m/s corresponds to a minimum mass of 8.4 Earth masses, making the planet a Super-Earth. In an independent study, observations with Keck-HIRES also failed to confirm the 10.24-day signal.
Effect on VGSC JZTX-IV acts on TTX-S sodium channels in DRG neurons by weakly reducing peak amplitudes and by obviously slowing inactivation kinetics. In contrast, JZTX-IV acts on TTX-R sodium channels on cardiac myocytes by obviously reducing its peak current and by weakly slowing inactivation kinetics. Additionally, JZTX-IV shifts the steady- state inactivation curve on both receptors. Even at high concentrations, JZTX- IV does not have any effect on TTX-R sodium channels on rat DRG neurons or on TTX-S sodium channels on hippocampal neurons.
The Microscale can be imagined by a three-dimensional brick and mortar wall. The bricks would be 0.5 μm thick layers of microscopic aragonite polygonal tablets approximately 5-8 μm in diameter. What holds the bricks together are the mortars and in the case of nacre, it is the 20-30 nm organic material that plays this role. Even though these tablets are usually illustrated as flat sheets, different microscopy techniques have shown that they are wavy in nature with amplitudes as large as half of the tablet's thickness.
In the lattice case the computation of observables in the effective theory involves the evaluation of large-dimensional integrals, while in the case of light-front field theory solutions of the effective theory involve solving large systems of linear equations. In both cases multi-dimensional integrals and linear systems are sufficiently well understood to formally estimate numerical errors. In practice such calculations can only be performed for the simplest systems. Light-front calculations have the special advantage that the calculations are all in Minkowski space and the results are wave functions and scattering amplitudes.
These are the harmonics. As a rule, the amplitude of its vibration is less for higher harmonics than for lower, meaning that higher harmonics are softer—though the details of this differ from instrument to instrument. The exact combination of different harmonics and their amplitudes is a primary factor affecting the timbre or tone quality of a particular musical tone. Theoretically, vibration over half the string's length will be twice as fast, and vibration over one-third of the string will be three times as fast, as the fundamental vibration over the whole string's length.
When asking the question "am I fat?" the answer is either yes or no, in terms of bits relative to quantum bits, respectively. When perceived in relation to quantum bits the answer can be both yes and no, taking into consideration the multitude of corresponding amplitudes. Traditionally, when one looks at a mirror and they see their reflection, and they are fat, the answer to that above question, will be yes. However, in the unconscious quantum logic, the answer is both yes and no, where the answers are superposed.
By utilizing low frequency (1-5 pps) or high frequency (80-100 pps) stimuli with durations of up to 1 second and amplitudes that produce pain, noxious-level stimulation seeks to ameliorate pain through the induction of a painful stimulus either at the pain site or at a remote location. The mechanism of action is believed to be related to an endorphin-mediated mechanism accompanied by the release of endogenous opiates that increase the patient's pain threshold. This level of stimulation is not the first approach chosen for electroanalgesia due to its induction of pain.
B9 25 March 2013 to meet demands especially for iron ore, phosphate and limestone production industries. F-Class features a HUCK-bolted screen body is connected for extra strength and rigidity and carbon steel is used for the side plates to give high strength. The shaft is strengthened with a reinforcing plate, which attaches to the slide plate and screen panels. Four- bearing screen provide much greater unit stability thus higher vibration amplitudes and/or frequencies may be used without excess isolation or dampening; overall plant noise emission.
The term voidage refers to the spacing between the materials. It is critical to know how the voidage behaviour of certain particle sizes affects the process in a vibrating fluidized bed as they are one of the key factors to be considered when designing and scaling up the vibrating fluidized bed from lab scale to industrial scale. From several experiments conducted, it was shown that vibration helps in the fluidization of particles as the axial and radial voidage distribution become more homogeneous. This is especially true for vibrating fluidized beds with large vibration amplitudes.
A simple approach to deal with artifacts is to simply remove epochs of data that exceed a certain threshold of contamination, for example, epochs with amplitudes higher than ±100 μV. However, this might lead to the loss of data that still contain artifact-free information. Another approach is to apply spatial and frequency band filters to remove artifacts, however, artifacts may overlap with the signal of interest in the spectral domain making this approach inefficient. Recently, independent component analysis (ICA) techniques have been used to correct or remove EEG contaminants.
The relative amplitudes (strengths) of the various harmonics primarily determine the timbre of different instruments and sounds, though onset transients, formants, noises, and inharmonicities also play a role. For example, the clarinet and saxophone have similar mouthpieces and reeds, and both produce sound through resonance of air inside a chamber whose mouthpiece end is considered closed. Because the clarinet's resonator is cylindrical, the even-numbered harmonics are less present. The saxophone's resonator is conical, which allows the even-numbered harmonics to sound more strongly and thus produces a more complex tone.
The phase angles in the equations for the impedance of capacitors and inductors indicate that the voltage across a capacitor lags the current through it by a phase of \pi/2, while the voltage across an inductor leads the current through it by \pi/2. The identical voltage and current amplitudes indicate that the magnitude of the impedance is equal to one. The impedance of an ideal resistor is purely real and is called resistive impedance: :\ Z_R = R In this case, the voltage and current waveforms are proportional and in phase.
Eye movement in scene viewing refers to the visual processing of information presented in scenes. A core aspect of studies in this area is the division of eye movements into the rapid movement of the eyes (saccades), and the focus of the eyes on a point (fixations). Several factors can influence eye movement in scene viewing, including the task and knowledge of the viewer (top-down factors), and the properties of the image being viewed (bottom-up factors). Typically, when presented with a scene, viewers demonstrate short fixation durations and long saccade amplitudes in the earlier phases of viewing an image.
However, the measurement of pulsations is very difficult, given the scarcity of variable blue stragglers, the small photometric amplitudes of their pulsations and the crowded fields in which these stars are often found. Some blue stragglers have been observed to rotate quickly, with one example in 47 Tucanae observed to rotate 75 times faster than the Sun, which is consistent with formation by collision. The other explanation relies on mass transfer between two stars born in a binary star system. The more massive of the two stars in the system will evolve first and as it expands, will overflow its Roche lobe.
This is a mild form of synchronization that may appear between two weakly coupled chaotic oscillators. In this case, there is no correlation between phases nor amplitudes; instead, the oscillations of the two systems develop a periodic envelope that has the same frequency in the two systems. This has the same order of magnitude than the difference between the average frequencies of oscillation of the two chaotic oscillator. Often, amplitude envelope synchronization precedes phase synchronization in the sense that when the strength of the coupling between two amplitude envelope synchronized oscillators is increased, phase synchronization develops.
Letters, 10, (1963), p. 460 Finally, in 1966 he succeeded in demonstrating the validity of the Froissart bound using local field theory, without postulating the Mandelstam representation.A.Martin, « Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity: », Nuovo Cimento, 42, (1966), p. 930 In the meantime, in 1964, he obtains an absolute bound on the pion-pion scattering amplitude,An absolute bound on the pion pion scattering amplitude, Stanford Preprint ITP-1 (1964) non publié this bound was considerably improved later.B. Bonnier, C Lopez et G.Mennessier, « Improved absolute bounds on the π0π0 amplitude », Physics Letters B, 60, (1), 22 December 1975, p.
Combining an All1 or Odd1 wave form with multiple Res1 (or Res2) wave forms (and adjusting their amplitudes) can model the harmonic spectrum of an instrument or sound. Combining sets of 8 FM operators with multi-spectral wave forms began in 1999 by Yamaha in the FS1R. The FS1R had 16 operators, 8 standard FM operators and 8 additional operators that used a noise source rather than an oscillator as its sound source. By adding in tuneable noise sources the FS1R could model the sounds produced in the human voice and in a wind instrument, along with making percussion instrument sounds.
Kepler-80 d, e, b, c and g have orbits locked in a resonance. While their periods are in a ~ 1.000: 1.512: 2.296: 3.100: 4.767 ratio, in a frame of reference that rotates with the conjunctions this reduces to a ratio of 4:6:9:12:18. Conjunctions of d and e, e and b, b and c, and c and g occur at relative intervals of 2:3:6:6 in a pattern that repeats about every 191 days. Librations of possible three-body resonances have amplitudes of only about 3 degrees, and modeling indicates the resonant system is stable to perturbations.
A two-centimeter slab absorbed sound that normally would require a much thicker material, at 400 Hz. A drop in amplitude was observed at 400 and 1100 Hz. The amplitudes of the sound waves entering the surface were compared with the sound waves at the center of the structure. The oscillations of the coated spheres absorbed sonic energy, which created the frequency gap; the sound energy was absorbed exponentially as the thickness of the material increased. The key result was the negative elastic constant created from resonant frequencies of the material. Projected applications of sonic crystals are seismic wave reflection and ultrasonics.
Another investigation with similar brain tools such as N400 amplitudes found higher N400 in females in response to social situations which positively correlated with self-reported empathy. Structural fMRI studies found females have larger grey matter volumes in posterior inferior frontal and anterior inferior parietal cortex areas which are correlated with mirror neurons in fMRI literature. Females were also found to have stronger link between emotional and cognitive empathy. The researchers found that the stability of these sex differences in development are unlikely to be explained by any environment influences but rather might have some roots in human evolution and inheritance.
Within these valleys which includes the provincial capital, the climate is characterized by its extreme aridity, large thermal amplitudes (different between day and night temperatures) and strong northeastern winds. The region is characterized by abundant sunshine with winds predominantly coming from the northeast and southeast. Nonetheless, there is large variation between different locations owing to differences in altitude and differences in the relief and altitudes of the surrounding mountains that enclose the valleys. Mean annual precipitation ranges from in the eastern parts of the region (some areas receive more than ) to less than in the west.
A large number of rotational lightcurves for this asteroid were obtained from several photometric observations. The first observations were made by Italian astronomer Silvano Casulli in November 2006, and gave a rotation period hours with a brightness amplitude of 0.19 in magnitude (). One month later, in December 2006, observations at the Carbuncle Hill Observatory gave a period of hours with an identical amplitude of 0.19 in magnitude (). Between November 2009 and December 2012, Czech astronomer Petr Pravec at Ondřejov Observatory obtained three more lightcurves with periods between 3.2235 and 3.2237 hours and corresponding amplitudes of 0.07.
The semiregular variable stars, particularly the SRa and SRb sub-classes, are often grouped with the Mira variables under the long-period variable heading. In other situations, the term is expanded to cover almost all cool pulsating stars. The semi-regular giant stars are closely related to the Mira variables: Mira stars generally pulsate in the fundamental mode; semiregular giants pulsate in one or more overtones. Photometric studies in the Large Magellanic Cloud looking for gravitational microlensing events have shown that essentially all cool evolved stars are variable, with the coolest stars showing very large amplitudes and warmer stars showing only micro-variations.
The above results state that the existence of a polynomial-time classical algorithm for the original boson sampling scheme with indistinguishable single photons (in the exact and approximate cases), for scattershot, as well as for the general Gaussian boson sampling problems is highly unlikely. Nevertheless, there are some non-trivial realizations of the boson sampling problem that allow for its efficient classical simulation. One such example is when the optical circuit is injected with distinguishable single photons. In this case, instead of summing the probability amplitudes corresponding to photonic many- particle paths, one has to sum the corresponding probabilities (i.e.
Another instance of classically simulable boson sampling setups consists of sampling from the probability distribution of coherent states injected into the linear interferometer. The reason is that at the output of a linear optical circuit coherent states remain such, and do not create any quantum entanglement among the modes. More precisely, only their amplitudes are transformed, and the transformation can be efficiently calculated on a classical computer (the computation comprises matrix multiplication). This fact can be used to perform corresponding sampling tasks from another set of states: so-called classical states, whose Glauber-Sudarshan P function is a well-defined probability distribution.
A voltage buffer amplifier is used to transfer a voltage from a first circuit, having a high output impedance level, to a second circuit with a low input impedance level. The interposed buffer amplifier prevents the second circuit from loading the first circuit unacceptably and interfering with its desired operation. In the ideal voltage buffer in the diagram, the input resistance is infinite and the output resistance zero (output impedance of an ideal voltage source is zero). Other properties of the ideal buffer are: perfect linearity, regardless of signal amplitudes; and instant output response, regardless of the speed of the input signal.
Like any Fourier-related transform, discrete cosine transforms (DCTs) express a function or a signal in terms of a sum of sinusoids with different frequencies and amplitudes. Like the discrete Fourier transform (DFT), a DCT operates on a function at a finite number of discrete data points. The obvious distinction between a DCT and a DFT is that the former uses only cosine functions, while the latter uses both cosines and sines (in the form of complex exponentials). However, this visible difference is merely a consequence of a deeper distinction: a DCT implies different boundary conditions from the DFT or other related transforms.
Natural-colour satellite image of the Tibetan Plateau Monsoons are caused by the different amplitudes of surface temperature seasonal cycles between land and oceans. This differential warming occurs because heating rates differ between land and water. Ocean heating is distributed vertically through a "mixed layer" that may be 50 meters deep through the action of wind and buoyancy-generated turbulence, whereas the land surface conducts heat slowly, with the seasonal signal penetrating only a meter or so. Additionally, the specific heat capacity of liquid water is significantly greater than that of most materials that make up land.
In solids, the measurements included amplitudes of longitudinal and shear waves in absolute terms. Ultrasound generation by a laser pulse for both the thermoelastic regime and the transition to the plasma regime was examined. By comparing measurements with theoretical predictions, a description of the magnitude and direction of stresses leading to ultrasonic generation was presented for the first time. It led to the proposition that laser-generated ultrasound could be regarded as a standard acoustic source.A.M. Aindow, R.J. Dewhurst, D.A. Hutchins and S.B. Palmer, "Characteristics of a laser-generated acoustic source in metals", Proc of SPIE, 236, 478-485, 1981.
Evoked potential amplitudes tend to be low, ranging from less than a microvolt to several microvolts, compared to tens of microvolts for EEG, millivolts for EMG, and often close to 20 millivolts for ECG. To resolve these low-amplitude potentials against the background of ongoing EEG, ECG, EMG, and other biological signals and ambient noise, signal averaging is usually required. The signal is time-locked to the stimulus and most of the noise occurs randomly, allowing the noise to be averaged out with averaging of repeated responses. Signals can be recorded from cerebral cortex, brain stem, spinal cord and peripheral nerves.
S Persei is classified as a semiregular variable star of type SRc, indicating that it is a supergiant, and it has one of the largest visual amplitudes of any variable of this type. While the General Catalogue of Variable Stars lists it as varying between magnitudes 7.9 and 12.0, it has since been seen fainter. The spectral type of S Persei also varies. Typically it is a red supergiant of spectral class M3 or M4, but particularly at deep visual minima it may show a much cooler spectral type of M7 or M8, highly unusual for a supergiant.
Megavitamin-B6 syndrome is characterized mainly by degeneration of dorsal root ganglion axons and cell bodies, although it also affects the trigeminal ganglia it is classified as a sensory ganglionopathy due to involvement of these ganglia. In electrodiagnostic testing, it has characteristic non-length- dependent abnormalities of sensory action potentials that occur globally, rather than distally decreasing of sensory nerve action potential amplitudes. Megavitamin-B6 syndrome is predominately a large fiber neuropathy characterized by sensory loss of joint position, vibration and ataxia. Although it has characteristics of small fiber neuropathy in severe cases where there is impairment of pain, temperature, and autonomic functions.
They are encoded in the positive geometry of the amplituhedron, via the singularity structure of the integrand for scattering amplitudes. Arkani-Hamed suggests this is why amplituhedron theory simplifies scattering-amplitude calculations: in the Feynman-diagrams approach, locality is manifest, whereas in the amplituhedron approach, it is implicit. Since the planar limit of the N = 4 supersymmetric Yang–Mills theory is a toy theory that does not describe the real world, the relevance of this technique for more realistic quantum field theories is currently unknown, but it provides promising directions for research into theories about the real world.
Each observable is represented by a self-adjoint linear operator acting on the state space. Each eigenstate of an observable corresponds to an eigenvector of the operator, and the associated eigenvalue corresponds to the value of the observable in that eigenstate. The inner product between two state vectors is a complex number known as a probability amplitude. During an ideal measurement of a quantum mechanical system, the probability that a system collapses from a given initial state to a particular eigenstate is given by the square of the absolute value of the probability amplitudes between the initial and final states.
The interpretation of nerve conduction studies is complex and requires the expertise of health care practitioners such as clinical neurophysiologists, medical neurologists, physical therapists, chiropractic neurologists or physiatrists. In general, different pathological processes result in changes in latencies, motor, and/or sensory amplitudes, or slowing of the conduction velocities to differing degrees. For example, slowing of the NCV usually indicates there is damage to the myelin. Another example, slowing across the wrist for the motor and sensory latencies of the median nerve indicates focal compression of the median nerve at the wrist, called carpal tunnel syndrome.
However, when the vibrational amplitudes are large, for example at high temperatures, anharmonicity becomes important. An example of the effects of anharmonicity is the thermal expansion of solids, which is usually studied within the quasi-harmonic approximation. Studying vibrating anharmonic systems using quantum mechanics is a computationally demanding task because anharmonicity not only makes the potential experienced by each oscillator more complicated, but also introduces coupling between the oscillators. It is possible to use first-principles methods such as density- functional theory to map the anharmonic potential experienced by the atoms in both molecules and solids.
Tides have also been observed with periods of 8 and 6 hours, although these latter tides generally have smaller amplitudes. This set of periods occurs because the solar heating of the atmosphere occurs in an approximate square wave profile and so is rich in harmonics. When this pattern is decomposed into separate frequency components using a Fourier transform, as well as the mean and daily (24-hr) variation, significant oscillations with periods of 12, 8 and 6 hrs are produced. Tides generated by the gravitational effect of the sun are very much smaller than those generated by solar heating.
Lambert–Eaton myasthenic syndrome (LEMS) is an autoimmune disease in which auto-antibodies are directed against voltage-gated calcium channels at presynaptic nerve terminals. Here, the antibodies inhibit the release of neurotransmitters, resulting in muscle weakness and autonomic dysfunctions. Nerve conduction studies performed on the Ulnar motor and sensory, Median motor and sensory, Tibial motor, and Peroneal motor nerves in patients with LEMS have shown that the conduction velocity across these nerves is actually normal. However, the amplitudes of the compound motor action potentials may be reduced by up to 55%, and the duration of these action potentials decreased by up to 47%.
The ideas of quantum mechanics continued to be developed throughout the 20th century. The picture that was developed was of a particulate world, with all phenomena and matter made of and interacting with discrete particles; however, these particles were described by a probability wave. The interactions, locations, and all of physics would be reduced to the calculations of these probability amplitudes. The particle-like nature of the world has been confirmed by experiment over a century, while the wave-like phenomena could be characterized as consequences of the wave packet aspect of quantum particles (see wave-particle duality).
A depiction of a slow wave, contraction and electrical threshold in relation to smooth muscle tone and resting membrane potential. Gastric slow waves occur at around 3 cycles-per-minute in humans and exhibit significance variances in both amplitudes and propagation velocities in the stomach due to the existence of a gradient of resting membrane potential gradient, interstitial cells of Cajal distributions, and gastric wall thickness. Gastric slow waves frequency, propagation velocity, and amplitude demonstrate significant inter-species differences. Extracellular bioelectrical recording studies have demonstrated that gastric slow waves originate from a pacemaker region located on the greater curvature of the stomach.
The towing tank also serves to determine the maneuvering behaviour in model scale. For this, the self- propelled model is exposed to a series of zig-zag maneuvers at different rudder angle amplitudes. Post-processing of the test data by means of system identification results in a numerical model to simulate any other maneuver like Dieudonné spiral test or turning circles. Additionally, a towing tank can be equipped with a PMM (planar motion mechanism) or a CPMC (computerized planar motion carriage) to measure the hydrodynamic forces and moments on ships or submerged objects under the influence of oblique inflow and enforced motions.
Bundles of them uniquely specify phonetic segments (phonemes, syllables, words). In this model, the incoming acoustic signal is believed to be first processed to determine the so-called landmarks which are special spectral events in the signal; for example, vowels are typically marked by higher frequency of the first formant, consonants can be specified as discontinuities in the signal and have lower amplitudes in lower and middle regions of the spectrum. These acoustic features result from articulation. In fact, secondary articulatory movements may be used when enhancement of the landmarks is needed due to external conditions such as noise.
Sharma also studied the waveform morphology of the P1 response in 2005 and 2007. She found that in early implanted children the P1 waveform morphology was normal. For late implanted children, the P1 waveforms were abnormal and had lower amplitudes when compared to normal waveform morphology. In 2008 Gilley and colleagues used source reconstruction and dipole source analysis derived from high density EEG recordings to estimate generators for the P1 in three groups of children: normal hearing children, children receiving a cochlear implant before the age of four, and children receiving a cochlear implant after the age of seven.
In pulse-height analysis (PHA) mode, the pulses are counted based on their amplitude. The number of different amplitudes that are counted depends on the number of channels of the MCA, but is normally in the range of a few thousand. In this way a histogram of frequency against pulse amplitude (or "height") can be produced and either sent to a computer, shown on a screen or (in older models) directly printed. This mode can be used to analyze energy distribution of various nuclear processes, including nuclear decay: this is the process used in alpha-, beta-, and gamma spectroscopy.
These are antenna arrays with multi channels digital beamforming, usually by using FFT. The theory of the 'digital antenna arrays' (DAA) started to emerge as a theory of multichannel estimation. Its origins go back into methods developed in the 1920s that were used to determine direction of the arrival of radio signals by a set of two antennas based on the phase difference or amplitudes of their output voltages. Thus, the assessment of the directions of arrival of a single signal was conducted according to pointedtype indicator readings or according to the Lissajous curves, drawn by beam on the oscilloscope screen.
Although Heisenberg did not know it at the time, the general format he worked out to express his new way of working with quantum theoretical calculations can serve as a recipe for two matrices and how to multiply them.Heisenberg's paper of 1925 is translated in B. L. Van der Waerden's Sources of Quantum Mechanics, where it appears as chapter 12. Heisenberg's groundbreaking paper of 1925 neither uses nor even mentions matrices. Heisenberg's great advance was the "scheme which was capable in principle of determining uniquely the relevant physical qualities (transition frequencies and amplitudes)"Aitchison, et al.
His other contributions include Singh-Pais theorems and Singh-Roy bounds related to compton scattering and scattering amplitudes. His studies have been documented by way of a number of articles and the article repository of the Indian Academy of Sciences has listed 84 of them. Besides, he has contributed chapters to books published by others including a lecture in a book edited by B. V. Sreekantan and Scientific Realism and Classical Physics, a general article published in History and Philosophy of Physics published by Indian Council of Philosophical Research. His work has also drawn citations from other authors.
MEAs were constructed and used to explore the electrophysiology of snail ganglia independently by Guenter Gross and his colleagues at the Center for Network Neuroscience in 1977 without prior knowledge of Thomas and his colleagues' work. In 1982, Gross observed spontaneous electrophysiological activity from dissociated spinal cord neurons, and found that activity was very dependent on temperature. Below about 30˚C signal amplitudes decrease rapidly to relatively small value at room temperature. Before the 1990s, significant entry barriers existed for new laboratories that sought to conduct MEA research due to the custom MEA fabrication and software they had to develop.
Of all waveform characteristics, P1-N1 amplitude is the most reliable and clinically relevant. cVEMP amplitude is linearly dependent upon stimulus intensity and is most reliably elicited with a loud (generally at or above 95 dB nHL) click or tone burst. The cVEMP can also be said to be low- frequency tuned, with largest amplitudes in response to 500–750 Hz tonebursts. This myogenic potential is felt to assess saccular function, because the response is present in completely deafened ears and because it is routed through the inferior vestibular nerve, which is known to dominantly innervate the saccule. .
Noise pollution is a factor of environmental degradation that is often overlooked and typically seen as not having a significant effect, though traffic noise can contribute to numerous disturbances for wildlife. An increasing number of studies have been done on the effects of noise on wildlife. Both the sounds made by motors and the wind over moving vehicle structures, and the ultrasonic vibrations transmitted through the air and ground from vehicle passage can overlap with the frequency ranges and amplitudes used by animals for communication. Several studies revealed that noise can have a negative effect, particularly on birds.
The following analysis, based on his writings, is not universally conceded, eg by Goldstein. Regardless of whether the Kido Butai broke radio silence and transmitted, there was a great deal of radio traffic picked up by its antennas. In that time period, it was known for a radio signal to reflect from the ionosphere (an atmospheric layer); ionospheric skip could result in its reception hundreds or even thousands of miles away. Receiving antennas were sometimes detected passively 'rebroadcasting' signals that reached them (at much lower amplitudes, sufficiently low that the phenomenon was not of practical importance, nor even of much significance.
On the other hand, the same type of analysis shows that for the high L/M models κ is considerably larger (30% or higher). For the regular variables the small relative growth rates κ imply that there are two distinct time scales, namely the period of oscillation and the longer time associated with the amplitude variation. Mathematically speaking, the dynamics has a center manifold, or more precisely a near center manifold. In addition, it has been found that the stellar pulsations are only weakly nonlinear in the sense that their description can be limited powers of the pulsation amplitudes.
Conventional Converging Ultrasonic Horn, produced by Industrial Sonomechanics, LLC Full-wave Barbell Ultrasonic Horn, produced by Industrial Sonomechanics, LLC An ultrasonic horn (also known as acoustic horn, sonotrode, acoustic waveguide, ultrasonic probe) is a tapering metal bar commonly used for augmenting the oscillation displacement amplitude provided by an ultrasonic transducer operating at the low end of the ultrasonic frequency spectrum (commonly between 15 and 100 kHz). The device is necessary because the amplitudes provided by the transducers themselves are insufficient for most practical applications of power ultrasound.Peshkovsky, S.L. and Peshkovsky, A.S., "Shock-wave model of acoustic cavitation", Ultrason. Sonochem., 2008.
The seismic moment, ''''', is proportional to the area of the rupture times the average slip that took place in the earthquake, thus it measures the physical size of the event. is derived from it empirically as a quantity without units, just a number designed to conform to the scale. A spectral analysis is required to obtain , whereas the other magnitudes are derived from a simple measurement of the amplitude of a specifically defined wave. All scales, except , saturate for large earthquakes, meaning they are based on the amplitudes of waves which have a wavelength shorter than the rupture length of the earthquakes.
Time- correlated single-photon counting (TCSPC) is usually employed because it compensates for variations in source intensity and single photon pulse amplitudes. Using commercial TCSPC equipment a fluorescence decay curve can be recorded with a time resolution down to 405 fs. The recorded fluorescence decay histogram obeys Poisson statistics which is considered in determining goodness of fit during fitting. More specifically, TCSPC records times at which individual photons are detected by a fast single-photon detector (typically a photo-multiplier tube (PMT) or a single photon avalanche photo diode (SPAD)) with respect to the excitation laser pulse.
In 2013, comparative tests were performed on android cell phone, tablet, and computer based BCIs, analyzing the power spectrum density of resultant EEG SSVEPs. The stated goals of this study, which involved scientists supported in part by the U.S. Army Research Laboratory, were to "increase the practicability, portability, and ubiquity of an SSVEP-based BCI, for daily use". Citation It was reported that the stimulation frequency on all mediums was accurate, although the cell phone's signal demonstrated some instability. The amplitudes of the SSVEPs for the laptop and tablet were also reported to be larger than those of the cell phone.
In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space. The principal advantages of the formalism are that it allows the computation of off-shell amplitudes and, when a classical action is available, gives non-perturbative information that cannot be seen directly from the standard genus expansion of string scattering. In particular, following the work of Ashoke Sen, it has been useful in the study of tachyon condensation on unstable D-branes. It has also had applications to topological string theory,E.
Gravity anomalies covering the Southern Ocean are shown here in false-color relief. Amplitudes range between −30 mGal (magenta) to +30 mGal (red). This image has been normalized to remove variation due to differences in latitude. The gal (symbol: Gal), sometimes called galileo after Galileo Galilei, is a unit of acceleration used extensively in the science of gravimetry.Barry N. Taylor, Guide for the Use of the International System of Units (SI), 1995, NIST Special Publication 811, Appendix B.BIPM SI brochure, 8th ed. 2006, Table 9: Non-SI units associated with the CGS and the CGS-Gaussian system of units .
A voice-operated gain-adjusting deviceVogad at Federal Standard 1037C or volume-operated gain-adjusting device (vogad) is a type of AGC or compressor for microphone amplification. It is usually used in radio transmitters to prevent overmodulation and to reduce the dynamic range of the signal which allows increasing average transmitted power. In telephony, this device takes a wide variety of input amplitudes and produces a generally consistent output amplitude. In its simplest form, a limiter can consist of a pair of back-to-back clamp diodes, which simply shunt excess signal amplitude to ground when the diode conduction threshold is exceeded.
Georg von Békésy (, ; born in Budapest, Hungary on 3 June 1899 – 13 June 1972) was a Hungarian biophysicist. By using strobe photography and silver flakes as a marker, he was able to observe that the basilar membrane moves like a surface wave when stimulated by sound. Because of the structure of the cochlea and the basilar membrane, different frequencies of sound cause the maximum amplitudes of the waves to occur at different places on the basilar membrane along the coil of the cochlea. High frequencies cause more vibration at the base of the cochlea while low frequencies create more vibration at the apex.
Békésy contributed most notably to our understanding of the mechanism by which sound frequencies are registered in the inner ear. He developed a method for dissecting the inner ear of human cadavers while leaving the cochlea partly intact. By using strobe photography and silver flakes as a marker, he was able to observe that the basilar membrane moves like a surface wave when stimulated by sound. Because of the structure of the cochlea and the basilar membrane, different frequencies of sound cause the maximum amplitudes of the waves to occur at different places on the basilar membrane along the coil of the cochlea.
These methods modify the covariance matrix used in the computations and, consequently, the posterior ensemble is no longer made only of linear combinations of the prior ensemble. For nonlinear problems, EnKF can create posterior ensemble with non-physical states. This can be alleviated by regularization, such as penalization of states with large spatial gradients. For problems with coherent features, such as hurricanes, thunderstorms, firelines, squall lines, and rain fronts, there is a need to adjust the numerical model state by deforming the state in space (its grid) as well as by correcting the state amplitudes additively.
The second derivative gives information on vibrations of the adsorbate as in IETS, which is why this technique is commonly called STM-IETS. In this case the role of the insulating oxide layer is played by the gap between the tip and the adsorbate. STM-IETS was first demonstrated by Stipe, Rezaei and Ho in 1998, seventeen years after the development of the STM. The requirements of cryogenic temperatures and extreme mechanical stability (mechanical vibrations of the tip over the adsorbate must have amplitudes in the range of picometers or less) make this technique experimentally challenging to realize.
The rotation direction in the circle depends on which of the two phase relationships exists and corresponds to right-hand circular polarization and left-hand circular polarization. In all other cases, where the two components either do not have the same amplitudes and/or their phase difference is neither zero nor a multiple of 90°, the polarization is called elliptical polarization because the electric vector traces out an ellipse in the plane (the polarization ellipse). This is shown in the above figure on the right. Detailed mathematics of polarization is done using Jones calculus and is characterised by the Stokes parameters.
Low frequency earthquakes do not exhibit the same seismic character as regular earthquakes namely because they lack distinct, impulsive body waves. P-wave arrivals from LFEs have amplitudes so small that they are often difficult to detect, so when the JMA first distinguished the unique class of earthquake it was primarily by the detection of S-wave arrivals which were emergent. Because of this, detecting LFEs is nearly impossible using classical techniques. Despite their lack of important seismic identifiers, LFEs can be detected at low Signal-to-Noise-Ratio (SNR) thresholds using advanced seismic correlation methods.
Several rotational lightcurves of Fini have been obtained from photometric observations. However, the asteroid, which shows a notably low brightness variation – indicative of a spherical rather than elongated shape – still has a poorly determined rotation period. Based on observations from February 2003 and November 2011, Brian Warner at his Palmer Divide Observatory in Colorado, determined three possible period solutions of , and hours with corresponding low amplitudes of , and magnitude (). Petr Pravec and Peter Kušnirák at Ondřejov Observatory derive a rotation period of hours from their observations in October 2001, or half of Warner's period solution, also with an amplitude of 0.2 magnitude ().
Studies have suggested similar mechanisms in the difficulty for older adults, such as age related optical changes that influence peripheral acuity, the ability to move attention over the visual field, the ability to disengage attention, and the ability to ignore distractors. A study by Lorenzo-López et al. (2008) provides neurological evidence for the fact that older adults have slower reaction times during conjunctive searches compared to young adults. Event-related potentials (ERPs) showed longer latencies and lower amplitudes in older subjects than young adults at the P3 component, which is related to activity of the parietal lobes.
A spin network is a one-dimensional graph, together with labels on its vertices and edges which encode aspects of a spatial geometry. A spin network is defined as a diagram like the Feynman diagram which makes a basis of connections between the elements of a differentiable manifold for the Hilbert spaces defined over them, and for computations of amplitudes between two different hypersurfaces of the manifold. Any evolution of the spin network provides a spin foam over a manifold of one dimension higher than the dimensions of the corresponding spin network. A spin foam is analogous to quantum history.
If the strength of a synapse is only reinforced by stimulation or weakened by its lack, a positive feedback loop will develop, causing some cells never to fire and some to fire too much. But two regulatory forms of plasticity, called scaling and metaplasticity, also exist to provide negative feedback. Synaptic scaling is a primary mechanism by which a neuron is able to stabilize firing rates up or down. Synaptic scaling serves to maintain the strengths of synapses relative to each other, lowering amplitudes of small excitatory postsynaptic potentials in response to continual excitation and raising them after prolonged blockage or inhibition.
Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves of the same frequency are out of phase with each other by 90°, a condition known as orthogonality or quadrature. The transmitted signal is created by adding the two carrier waves together.
The basic idea is to use mathematical signal processing methods such as Fourier analysis in combination with suitable computer hardware to allow for real-time measurements of acoustic signal amplitudes as well as their distribution in frequency space. The main benefit of this technique is the enhanced signal-to-noise ratio when it comes to the separation of acoustic emission from a certain source and other, unwanted contamination by any kinds of noise. The technique is therefore mostly applied in industrial production processes, e.g. cold forming or machining, where a 100 percent quality control is required or in condition monitoring for e.g.
Average annual temperature regimes vary approximately 13 °C (55 °F) for Pachypodium brevicaule, P. densiflorum, and P. eburneum to 26.7 °C (81 °F) for the species P. decaryi, P. rutenbergainum, and P. windsorii. In continental southern Africa, the extreme temperatures range from -10 °C (14 °F) for P. succulentum locations to as much as 45 °C (113 °F) for P. bispinosum, P. lealii, and P. namaquanum. In winter time, snow remains a possibility for Africa's south-eastern Mountain Grassland. Importantly the African species of Pachypodium live in habitats with a heat regime resembling greater amplitudes than those of Madagascar.
Spectroscopic photo- reflectance employs a broad band probe light source, which may cover wavelengths from the infrared to the ultraviolet. By fitting spectroscopic photo-reflectance data with the conventional third derivative functional form, a comprehensive set of interband transition energies, amplitudes, and widths may be obtained, providing an essentially complete characterization of the electronic properties of the sample of interest. However, owing to the need to keep the probe light intensity to a minimum and to the practical necessity of phase-locked detection, spectroscopic photo-reflectance measurements must be made sequentially, i.e. probe one wavelength at a time.
In quantum field theory, the LSZ reduction formula is a method to calculate S-matrix elements (the scattering amplitudes) from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann. Although the LSZ reduction formula cannot handle bound states, massless particles and topological solitons, it can be generalized to cover bound states, by use of composite fields which are often nonlocal.
The Ultraspherical window's µ parameter determines whether its Fourier transform's side-lobe amplitudes decrease, are level, or (shown here) increase with frequency. The Ultraspherical window was introduced in 1984 by Roy Streit and has application in antenna array design, non-recursive filter design, and spectrum analysis. Like other adjustable windows, the Ultraspherical window has parameters that can be used to control its Fourier transform main-lobe width and relative side-lobe amplitude. Uncommon to other windows, it has an additional parameter which can be used to set the rate at which side-lobes decrease (or increase) in amplitude.
High-resolution, low-dynamic-range windows such as the rectangular window also have the property of high sensitivity, which is the ability to reveal relatively weak sinusoids in the presence of additive random noise. That is because the noise produces a stronger response with high-dynamic-range windows than with high-resolution windows. At the other extreme of the range of window types are windows with high dynamic range but low resolution and sensitivity. High-dynamic-range windows are most often justified in wideband applications, where the spectrum being analyzed is expected to contain many different components of various amplitudes.
To assess the bubbling behaviour of the vibrating fluidized bed, factors such as the size of the bubble and its velocity were also taken into account. For various vibration amplitudes and frequencies, numerical simulations of the vibrating fluidized bed was conducted to better understand the behaviour of the bubbles under the vibrating conditions. The results showed that due to the oscillatory displacement of the vibrating fluidized bed causes the mean bubble diameter to increase but lowers the acceleration rate of the bubbles. Thus, it was concluded that bubbling behaviour in a vibrating fluidized bed in dependent on the vibrations.
Most instruments produce harmonic sounds, but many instruments produce partials and inharmonic tones, such as cymbals and other indefinite-pitched instruments. When the tuning note in an orchestra or concert band is played, the sound is a combination of 440 Hz, 880 Hz, 1320 Hz, 1760 Hz and so on. Each instrument in the orchestra or concert band produces a different combination of these frequencies, as well as harmonics and overtones. The sound waves of the different frequencies overlap and combine, and the balance of these amplitudes is a major factor in the characteristic sound of each instrument.
The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively, and equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.
Two waves traveling in opposite directions across the same medium combine linearly. In this animation, both waves have the same wavelength and the sum of amplitudes results in a standing wave. two waves permeate without influencing each other Waves are usually described by variations in some parameter through space and time—for example, height in a water wave, pressure in a sound wave, or the electromagnetic field in a light wave. The value of this parameter is called the amplitude of the wave, and the wave itself is a function specifying the amplitude at each point.
Figure 2: The internal tide sea surface elevation that is in phase with the surface tide (i.e., crests occur in a certain spot at a certain time that are both the same relative to the surface tide) can be detected by satellite (top). (The satellite track is repeated about every 10 days and so M2 tidal signals are shifted to longer periods due to aliasing.) The longest internal tide wavelengths are about 150 km near Hawaii and the next longest waves are about 75 km long. The surface displacements due to the internal tide are plotted as wiggly red lines with amplitudes plotted perpendicular to the satellite groundtracks (black lines).
Finally, this process often attempts to also preserve and extract the formation interface reflectivity information imbedded in the seismic data amplitudes, so that they can be used to reconstruct the elastic properties of the geological formations (amplitude preservation, seismic inversion). There are a variety of migration algorithms, which can be classified by their output domain into the broad categories of time migration or depth migration, and pre-stack migration or post-stack migration (orthogonal) techniques. Depth migration begins with time data converted to depth data by a spatial geological velocity profile. Post-stack migration begins with seismic data which has already been stacked, and thus already lost valuable velocity analysis information.
Essential in synergetics is the order-parameter concept which was originally introduced in the Ginzburg–Landau theory in order to describe phase-transitions in thermodynamics. The order parameter concept is generalized by Haken to the "enslaving-principle" saying that the dynamics of fast-relaxing (stable) modes is completely determined by the 'slow' dynamics of as a rule only a few 'order-parameters' (unstable modes). The order parameters can be interpreted as the amplitudes of the unstable modes determining the macroscopic pattern. As a consequence, self-organization means an enormous reduction of degrees of freedom (entropy) of the system which macroscopically reveals an increase of 'order' (pattern-formation).
When light makes multiple reflections between two or more parallel surfaces, the multiple beams of light generally interfere with one another, resulting in net transmission and reflection amplitudes that depend on the light's wavelength. The interference, however, is seen only when the surfaces are at distances comparable to or smaller than the light's coherence length, which for ordinary white light is few micrometers; it can be much larger for light from a laser. An example of interference between reflections is the iridescent colours seen in a soap bubble or in thin oil films on water. Applications include Fabry–Pérot interferometers, antireflection coatings, and optical filters.
These amplitudes and starting phase angles represented the local tidal constants, separately reset, and different for each place for which predictions were to be made. Also, in the real Thomson machines, to save on motion and wear of the other parts, the shaft and pulley with the largest expected motion (for the M2 tide component at twice per lunar day) was mounted nearest to the pen, and the shaft and pulley representing the smallest component was at the other end, nearest to the point of fixing of the flexible cord or chain, to minimize unnecessary motion in the most part of the flexible cord.
Spoken audio is recreated by modelling speech as a sum of harmonically related sine waves with independent amplitudes called Line spectral pairs, or LSP, on top of a determined fundamental frequency of the speaker's voice (pitch). The (quantised) pitch and the amplitude (energy) of the harmonics are encoded, and with the LSP's are exchanged across a channel in a digital format. The LSP coefficients represent the Linear Predictive Coding (LPC) model in the frequency domain, and lend themselves to a robust and efficient quantisation of the LPC parameters. The digital bytes are in a bit-field format that have been packed together into bytes.
True clapotis is very rare, because the depth of the water or the precipitousness of the shore are unlikely to completely satisfy the idealized requirements. In the more realistic case of partial clapotis, where some of the incoming wave energy is dissipated at the shore, the incident wave is less than 100% reflected, and only a partial standing wave is formed where the water particle motions are elliptical. This may also occur at sea between two different wave trains of near equal wavelength moving in opposite directions, but with unequal amplitudes. In partial clapotis the wave envelope contains some vertical motion at the nodes.
In these simple cases, no automatic calculation software packages are needed and the cross-section analytical expression can be easily derived at least for the lowest approximation: the Born approximation also called the leading order or the tree level (as Feynman diagrams have only trunk and branches, no loops). Interactions at higher energies open a large spectrum of possible final states and consequently increase the number of processes to compute, however. The calculation of probability amplitudes in theoretical particle physics requires the use of rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented graphically as Feynman diagrams.
Typically a current buffer amplifier is used to transfer a current from a first circuit, having a low output impedance level, to a second circuit with a high input impedance level. The interposed buffer amplifier prevents the second circuit from loading the first circuit's current unacceptably and interfering with its desired operation. In the ideal current buffer in the diagram, the output impedance is infinite (an ideal current source) and the input impedance is zero (a short circuit). Again, other properties of the ideal buffer are: perfect linearity, regardless of signal amplitudes; and instant output response, regardless of the speed of the input signal.
Simulated HREM images for GaN[0001] The contrast of a HRTEM image arises from the interference in the image plane of the electron wave with itself. Due to our inability to record the phase of an electron wave, only the amplitude in the image plane is recorded. However, a large part of the structure information of the sample is contained in the phase of the electron wave. In order to detect it, the aberrations of the microscope (like defocus) have to be tuned in a way that converts the phase of the wave at the specimen exit plane into amplitudes in the image plane.
The prism fusion range (PFR) or fusional vergence amplitude is a clinical eye test performed by orthoptists, optometrists, and ophthalmologists to assess motor fusion, specifically the extent to which a patient can maintain binocular single vision (BSV) in the presence of increasing vergence demands. Motor fusion is largely accounted to amplitudes of fusional vergences and relative fusional vergences. Fusional vergence is the maximum vergence movement enabling BSV and the limit is at the point of diplopia (double vision). Relative fusional vergence is the maximum vergence movement enabling a patient to see a comfortable clear image and the limit is represented by the first point of blur.
Male gerbils can produce ultrasonic sounds with frequencies ranging from approximately 27 to 35 kHz and amplitudes ranging from approximately 0 to 70 dB. Their larynx is involved in the production of these ultrasonic sounds. Experimentation revealed five findings of interest, which are that adults only emit ultrasonic sounds when stimulated socially, males signal frequently than females, dominant males are active in vocalizations than subordinate males, ultrasounds are triggered by conspecific odors, and d-amphetamine, a central nervous system stimulant, contributes high levels of ultrasounds and chlorpromazine, an antipsychotic medication, lowers the emission rate. In addition, there's been a relationship between the ultrasonic sounds and their ability to reproduce.
Polarization is an example of a qubit degree of freedom, which forms a fundamental basis for an understanding of more complicated quantum phenomena. Much of the mathematical machinery of quantum mechanics, such as state vectors, probability amplitudes, unitary operators, and Hermitian operators, emerge naturally from the classical Maxwell's equations in the description. The quantum polarization state vector for the photon, for instance, is identical with the Jones vector, usually used to describe the polarization of a classical wave. Unitary operators emerge from the classical requirement of the conservation of energy of a classical wave propagating through lossless media that alter the polarization state of the wave.
The thickness of the depletion layer of a reverse-biased semiconductor diode varies with the DC voltage applied across the diode. Any diode exhibits this effect (including p/n junctions in transistors), but devices specifically sold as variable capacitance diodes (also called varactors or varicaps) are designed with a large junction area and a doping profile specifically designed to maximize capacitance. Their use is limited to low signal amplitudes to avoid obvious distortions as the capacitance would be affected by the change of signal voltage, precluding their use in the input stages of high-quality RF communications receivers, where they would add unacceptable levels of intermodulation. At VHF/UHF frequencies, e.g.
If a function f represents an unknown density, then the Radon transform represents the projection data obtained as the output of a tomographic scan. Hence the inverse of the Radon transform can be used to reconstruct the original density from the projection data, and thus it forms the mathematical underpinning for tomographic reconstruction, also known as iterative reconstruction. The Radon transform data is often called a sinogram because the Radon transform of an off-center point source is a sinusoid. Consequently, the Radon transform of a number of small objects appears graphically as a number of blurred sine waves with different amplitudes and phases.
Hertzsprung–Russell diagram showing the location of several types of variable stars superimposed on a display of the different luminosity classes. Classical Cepheids (also known as Population I Cepheids, Type I Cepheids, or Delta Cepheid variables) are a type of Cepheid variable star. They are population I variable stars that exhibit regular radial pulsations with periods of a few days to a few weeks and visual amplitudes from a few tenths of a magnitude to about 2 magnitudes. There exists a well-defined relationship between a classical Cepheid variable's luminosity and pulsation period, securing Cepheids as viable standard candles for establishing the galactic and extragalactic distance scales.
This task requires the subject to perform movements to indicate understanding of a sentence, such as moving to press a button or pressing a button with a specific hand posture, that are either compatible or incompatible with movement implied by the sentence. For example, pressing a button with an open hand to indicate understanding of the sentence "Jane high-fived Jack" would be considered a compatible movement, as the sentence implies an open-handed posture. Motor potentials (MP) are an Event Related Potentials (ERPs) stemming from the motor cortex, and are associated with execution of movement. Enhanced amplitudes of MPs have been associated with precision and quickness of movements.
The core contained an annual variation of nitrate concentration, accompanied by a number of 'spikes' of different amplitudes. The strongest of these in the entire record was dated to within a few weeks of the Carrington event of 1859. However, other events can produce nitrate spikes, including biomass burning which also produces enhanced ammonium concentrations. An examination of fourteen ice cores from Antarctic and Arctic regions showed large nitrate spikes: however, none of them were dated to 1859 other than the one already mentioned, and that one seems to be too soon after the Carrington event and too short to be explained by it.
Gradient pattern analysis (GPA)Rosa, R.R., Pontes, J., Christov, C.I., Ramos, F.M., Rodrigues Neto, C., Rempel, E.L., Walgraef, D. Physica A 283, 156 (2000). is a geometric computing method for characterizing geometrical bilateral symmetry breaking of an ensemble of symmetric vectors regularly distributed in a square lattice. Usually, the lattice of vectors represent the first-order gradient of a scalar field, here an M x M square amplitude matrix. An important property of the gradient representation is the following: A given M x M matrix where all amplitudes are different results in an M x M gradient lattice containing N_{V} = M^2 asymmetric vectors.
Deneb is the prototype of the Alpha Cygni (α Cygni) variable stars, whose small irregular amplitudes and rapid pulsations can cause its magnitude to vary anywhere between 1.21 and 1.29. Its variability was discovered by Lee in 1910, but was not formally placed as a unique class of variable stars until the 1985 4th edition of the General Catalogue of Variable Stars. The cause of the pulsations of Alpha Cygni variable stars are not fully understood, but their irregular nature seems to be due to beating of multiple pulsation periods. Analysis of radial velocities determined 16 different harmonic pulsation modes with periods ranging between 6.9 to 100.8 days.
However, a specific solution to the problem of superRayleigh resolution of the emission sources was proposed by Varyukhin V.A. and Zablotskiy M.A. only in 1962, they invented corresponding method of measuring of directions to sources of electromagnetic field.A.S. USSR № 25752. Method of measuring of directions to sources of electromagnetic field. // Varyukhin V.A., Zablotskiy M.A. – 1962 This method was based on the processing of information contained in the distribution of complex voltage amplitudes at the outputs of amplitude, phase and phase- amplitude multichannel analyzers and it permitted to determine the angular coordinates of sources within the width of the main lobe of the receiving antenna system.
By assuming that all possible components exist initially in roughly equal (but minuscule) amplitudes, the size of the final drops can be predicted by determining by wave number which component grows the fastest. As time progresses, it is the component with the maximal growth rate that will come to dominate and will eventually be the one that pinches the stream into drops. Although a thorough understanding of how this happens requires a mathematical development (see references), the diagram can provide a conceptual understanding. Observe the two bands shown girdling the stream—one at a peak and the other at a trough of the wave.
A phase vocoder is a type of vocoder which can scale both the frequency and time domains of audio signals by using phase information. The computer algorithm allows frequency-domain modifications to a digital sound file (typically time expansion/compression and pitch shifting). At the heart of the phase vocoder is the short-time Fourier transform (STFT), typically coded using fast Fourier transforms. The STFT converts a time domain representation of sound into a time-frequency representation (the "analysis" phase), allowing modifications to the amplitudes or phases of specific frequency components of the sound, before resynthesis of the time-frequency domain representation into the time domain by the inverse STFT.
Note that video signals use the "IRE" unit instead of DC voltages to describe levels and amplitudes. Based on a standard 1 Vpp NTSC composite-video signal that swings from -286 mV (sync tip) to +714 mV (peak video), a 140 IRE peak-to-peak convention is established. One NTSC IRE unit is 7.14mV, where -40 IRE is equivalent to -286 mV, and +100 IRE is equivalent to +714 mV. Note that 0 IRE is equivalent to 0 V. The black level is equivalent to 53.57 mV (7.5 IRE) The PAL video signal is slightly different in that it swings from -300 mV to +700 mV, instead.
He observed that one could not then use any statements about such things as "the position and period of revolution of the electron."B.L.Van der Waerden, Sources of Quantum Mechanics, p. 261 Rather, to make true progress in understanding the radiation of the simplest case, the radiation of excited hydrogen atoms, one had measurements only of the frequencies and the intensities of the hydrogen bright-line spectrum to work with. In classical physics, the intensity of each frequency of light produced in a radiating system is equal to the square of the amplitude of the radiation at that frequency, so attention next fell on amplitudes.
Nehru Science Center Singh's studies spanned the fields of high energy physics, quantum mechanics and particle physics and he has made reportedly significant contributions on S-matrix theory and symmetry theories of hadrons. His collaboration with Virendra Gupta resulted in the development of Gupta-Singh coupling constant sum rule related to baryon decuplet and he worked along M. A. Beg to develop the Beg-Singh SU (6) mass formula. His theoretical work on scattering amplitudes have helped widen the understanding of high energy total cross-sections in hadronic processes. He proposed Singh lemma, a method of calculating the threshold value of the amplitude from the gauge condition.
These attributes involve separating and classifying seismic events within each trace based on their frequency content. The application of these attributes is commonly called spectral decomposition. The starting point of spectral decomposition is to decompose each 1D trace from the time domain into its corresponding 2D representation in the time- frequency domain by means of any method of time-frequency decomposition such as: short-time Fourier transform, continuous wavelet transform, Wigner-Ville distribution, matching pursuit, among many others. Once each trace has been transformed into the time-frequency domain, a bandpass filter can be applied to view the amplitudes of seismic data at any frequency or range of frequencies.
Images from the Galileo and New Horizons space probes show the presence of two sets of spiraling vertical corrugations in the main ring. These waves became more tightly wound over time at the rate expected for differential nodal regression in Jupiter's gravity field. Extrapolating backwards, the more prominent of the two sets of waves appears to have been excited in 1995, around the time of the impact of Comet Shoemaker-Levy 9 with Jupiter, while the smaller set appears to date to the first half of 1990. Galileo's November 1996 observations are consistent with wavelengths of and , and vertical amplitudes of and , for the larger and smaller sets of waves, respectively.
The S-matrix is closely related to the transition probability amplitude in quantum mechanics and to cross sections of various interactions; the elements (individual numerical entries) in the S-matrix are known as scattering amplitudes. Poles of the S-matrix in the complex-energy plane are identified with bound states, virtual states or resonances. Branch cuts of the S-matrix in the complex-energy plane are associated to the opening of a scattering channel. In the Hamiltonian approach to quantum field theory, the S-matrix may be calculated as a time-ordered exponential of the integrated Hamiltonian in the interaction picture; it may also be expressed using Feynman's path integrals.
Under normal conditions, seismic noise has very low amplitude and cannot be felt by humans, and was also too low to be recorded by most early seismometers at the end of 19th century. However, by the early 20th century, Japanese seismologist Fusakichi Omori could already record ambient vibrations in buildings, where the amplitudes are magnified. He determined building resonance frequencies and studied their evolution as a function of damage. Globally visible 30 s–5 s seismic noise was recognized early in the history of seismology as arising from the oceans, and a comprehensive theory of its generation was published by Longuet-Higgins in 1950.
The climate is equatorial (Af, according to the Köppen climate classification), with high indices of relative humidity of the air and low thermal amplitudes, being the average temperature compensated of . The rainfall index is about 2,300 millimeters per year, with a decrease in the quarter from June to August, when the municipality is more subject to "friagem" events, when polar air masses reach the region and lower the temperature, sometimes to values of 15°C or less. The average sunshine time is approximately 1 350 hours per year. According to data from the National Institute of Meteorology (INMET), since 1974 the lowest temperature recorded at Eirunepé was on June 1, 1988.
The P3b is a subcomponent of the P300, an event-related potential (ERP) component that can be observed in human scalp recordings of brain electrical activity. The P3b is a positive-going amplitude (usually relative to a reference behind the ear or the average of two such references) peaking at around 300 ms, though the peak will vary in latency (delay between stimulus and response) from 250–500 ms or later depending upon the task and on the individual subject response. Amplitudes are typically highest on the scalp over parietal brain areas. The P3b has been a prominent tool used to study cognitive processes for several decades.
Spring tides, when the sun-earth-moon system forms a line, cause the largest tidal amplitudes during lunar monthly tidal variations. In contrast, neap tides, when the sun-earth-moon system forms a right angle, are muted, and in a semi-diurnal tidal system (such as that seen at the CBBT site) this can be seen as a lowest intertidal range. Two interesting points that arise from comparing these two sites at opposite ends of the Bay are their tidal characteristics - semi-diurnal tide for CBBT and mixed tide for Baltimore (due to resonance in the Bay) - and the differences in amplitude (due to dissipation in the Bay).
In quantum mechanics, this could involve rotations but also translations of particles, which are apparently undone at the end. One might expect that the waves in the system return to the initial state, as characterized by the amplitudes and phases (and accounting for the passage of time). However, if the parameter excursions correspond to a loop instead of a self-retracing back-and-forth variation, then it is possible that the initial and final states differ in their phases. This phase difference is the geometric phase, and its occurrence typically indicates that the system's parameter dependence is singular (its state is undefined) for some combination of parameters.
Typically only one of the new frequencies is desired, and the other signal is filtered out of the output of the mixer. The output signal will have an intensity proportional to the product of the amplitudes of the input signals. The most important and widely used application of the heterodyne technique is in the superheterodyne receiver (superhet), invented by U.S. engineer Edwin Howard Armstrong in 1918. In this circuit, the incoming radio frequency signal from the antenna is mixed with a signal from a local oscillator (LO) and converted by the heterodyne technique to a lower fixed frequency signal called the intermediate frequency (IF).
There are many mathematically equivalent formulations of quantum mechanics. One of the oldest and most common is the "transformation theory" proposed by Paul Dirac, which unifies and generalizes the two earliest formulations of quantum mechanics – matrix mechanics (invented by Werner Heisenberg) and wave mechanics (invented by Erwin Schrödinger). Especially since Heisenberg was awarded the Nobel Prize in Physics in 1932 for the creation of quantum mechanics, the role of Max Born in the development of QM was overlooked until the 1954 Nobel award. The role is noted in a 2005 biography of Born, which recounts his role in the matrix formulation and the use of probability amplitudes.
Then the system evolves following the time- dependent Schrödinger equation, a natural quantum-mechanical evolution of physical systems. The amplitudes of all candidate states keep changing, realizing a quantum parallelism, according to the time-dependent strength of the transverse field, which causes quantum tunneling between states. If the rate of change of the transverse field is slow enough, the system stays close to the ground state of the instantaneous Hamiltonian (also see adiabatic quantum computation). If the rate of change of the transverse field is accelerated, the system may leave the ground state temporarily but produce a higher likelihood of concluding in the ground state of the final problem Hamiltonian, i.e.
Another investigation with similar brain tools such as N400 amplitudes found, on average, higher N400 in females in response to social situations which positively correlated with self-reported empathy. Structural fMRI studies also found females to have larger grey matter volumes in posterior inferior frontal and anterior inferior parietal cortex areas which are correlated with mirror neurons in fMRI literature. Females also tended to have a stronger link between emotional and cognitive empathy. The researchers found that the stability of these sex differences in development are unlikely to be explained by any environment influences but rather might have some roots in human evolution and inheritance.
Illustration of the implicit even/odd extensions of DST input data, for N=9 data points (red dots), for the four most common types of DST (types I–IV). Like any Fourier-related transform, discrete sine transforms (DSTs) express a function or a signal in terms of a sum of sinusoids with different frequencies and amplitudes. Like the discrete Fourier transform (DFT), a DST operates on a function at a finite number of discrete data points. The obvious distinction between a DST and a DFT is that the former uses only sine functions, while the latter uses both cosines and sines (in the form of complex exponentials).
For particular test colors found in the test color bar pattern, exact amplitudes and phases are sometimes defined for test and trouble shooting purposes only. Although, in response to changing U and V values, the chroma sinewave changes phase with respect to the subcarrier, it's not correct to say that the subcarrier is simply "phase modulated". That is because a single sine wave U test signal with QAM produces only one pair of sidebands, whereas real phase modulation under the same test conditions would produce multiple sets of sidebands occupying more frequency spectrum. In NTSC, the chrominance sine wave has the same average frequency as the subcarrier frequency.
Owing to the shape of the country, the close proximity to the ocean means that most of the country, excluding the north is moderated by the surrounding oceans, leading to lower thermal amplitudes than comparable latitudes in the northern hemisphere. The two main currents that impact the climate of Argentina are the Brazil Current from the north and the Malvinas Current from the south (a branch of the Antarctic Circumpolar Current). The Brazil Current transports warm subtropical waters southwards while the Malvinas Current transports cold, subantarctic waters northwards. The Malvinas Current cools the coastal areas, particularly during winter when the current is more stronger.
Charcot–Marie–Tooth disease (CMT) is the most common form of hereditary neuropathy and can be further subdivided into two types: Type 1: demyelinating, and Type 2: axonal. Measurement of chronaxie and rheobase for these diseased nerves has concluded that electrophysiologically, a patient with demyelinating (Type I) CMT demonstrates slow nerve conduction velocity, frequently accompanied by reduced amplitudes of motor and sensory action potentials; moreover, axonal (Type II) CMT can be attributed to impaired interaction between Schwann cells and axons. Changes in excitability measures are typically universal and vary little between patients, and this is likely due to the diffuse distribution of demyelination, suggesting changed cable properties associated with short internodes.
A core aspect in these studies is the division of eye movements into saccades, the rapid movement of the eyes, and fixations, the focus of the eyes on a point. There are several factors which influence eye movement in scene viewing, both the task and knowledge of the viewer (top- down factors), and the properties of the image being viewed (bottom-up factors). The study of eye movement in scene viewing helps to understand visual processing in more natural environments. Typically, when presented with a scene, viewers demonstrate short fixation durations and long saccade amplitudes in the earlier phases of viewing an image, representing ambient processing.
Vestibular duct perilymph vibrations bend organ of Corti outer cells (4 lines) causing prestin to be released in cell tips. This causes the cells to be chemically elongated and shrunk (somatic motor), and hair bundles to shift which, in turn, electrically affects the basilar membrane’s movement (hair-bundle motor). These motors (outer hair cells) amplify the traveling wave amplitudes over 40-fold. The outer hair cells (OHC) are minimally innervated by spiral ganglion in slow (unmyelinated) reciprocal communicative bundles (30+ hairs per nerve fiber); this contrasts inner hair cells (IHC) that have only afferent innervation (30+ nerve fibers per one hair) but are heavily connected.
Plots of seismic events based on their average amplitudes and frequencies. Low frequency earthquakes are peaked between 1 and 3 Hz. Low frequency earthquakes (LFEs) are seismic events defined by waveforms with periods far greater than those of ordinary earthquakes and abundantly occur during slow earthquakes. LFEs can be volcanic, semi-volcanic, or tectonic in origin, but only tectonic LFEs or LFEs generated during slow earthquakes are described here. Tectonic LFEs are characterized by generally low magnitudes (M<3) and have frequencies peaked between 1 and 3 Hz. They are the largest constituent of non-volcanic tremor at subduction zones, and in some cases are the only constituent.
The most common method for identifying LFEs involves the correlation of the seismic record with a template constructed from confirmed LFE waveforms. Since LFEs are such subtle events and have amplitudes that are frequently drowned out by background noise, templates are built by stacking similar LFE waveforms to reduce the SNR. Noise is reduced to such an extent that a relatively clean waveform can be searched for in the seismic record, and when correlation coefficients are deemed high enough an LFE is detected. Determination of the slip orientation responsible for LFEs and earthquakes in general is done by the P-wave first-motion method.
The P3a has been associated with brain activity related to the engagement of attention (especially the orienting, involuntary shifts to changes in the environment), and the processing of novelty. The P3b has a positive-going amplitude (usually relative to a reference behind the ear or the average of two such references) that peaks at around 300 ms, and the peak will vary in latency from 250 to 500 ms or more, depending upon the task and the individual subject response. Amplitudes are typically highest on the scalp over parietal brain areas. The P3b has been a prominent tool used to study cognitive processes, especially psychology research on information processing.
It has yet to be explained how any overall localised charge distribution in the form of double layers might provide a source of energy for auroral electrons precipitated into the atmosphere. Interpretation of the FAST spacecraft data proposed strong double layers in the auroral acceleration region. Strong double layers have also been reported in the downward current region by Andersson et al. Parallel electric fields with amplitudes reaching nearly 1 V/m were inferred to be confined to a thin layer of approximately 10 Debye lengths. It is stated that the structures moved ‘at roughly the ion acoustic speed in the direction of the accelerated electrons, i.e.
Korçë has a transitional Mediterranean climate (or continental Mediterranean climate) with high temperature amplitudes. The hottest month is August () while January () is the coldest. The city receives around annual precipitation with summer minimum and winter maximum, which makes it easily the driest major city in generally humid Albania, owing to the rain shadow of the coastal mountains. The temperatures in Korçë generally remain cooler than the western part of Albania, due to the middle altitude of the plain in which it is situated, but it receives about 2300 hours of solar radiation per year, so its temperatures are higher than those in Northeastern Albania.
Some localities have unusual tidal characteristics, such as Gulf St Vincent, South Australia, where the amplitudes of the main semi-diurnal tide constituents are almost identical. At neap tides the semi-diurnal tide is virtually absent, resulting in the phenomenon known as a "dodge tide"Australian Government > Bureau of Meteorology > National Tidal Unit Glossary Accessed 13 March 2015.Australian Government > Bureau of Meteorology > Dodge tide Accessed 13 March 2015.—a day- long period of slack water—occurring twice a month; this effect is accentuated near the equinoxes when the diurnal component also vanishes, resulting in a period of 2–3 days of slack water.
Tremblay et al. 2001 Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear and Hearing 22,79–90 Enhanced P2 amplitudes have been reported in musicians with extensive listening experienceShahin et al. 2003, Enhancement of Neuroplastic P2 and N1c Auditory Evoked Potentials in Musicians, Journal of Neuroscience, 2 July 2003, 23(13):5545–5552 as well as laboratory based auditory training experiments.Tremblay et al. 2009, Auditory training alters the physiological detection of stimulus-specific cues in humans. Clinical Neurophysiology. 120,128–135 A significant finding is that P2 amplitude changes are sometimes seen independent of N1 amplitude changes,Ross and Tremblay 2009.
The free reed of the harmonium is riveted from a metal frame and is subjected to airflow, which is pumped from the bellows through the reservoir, pushing the reed and bringing it to self-exciting oscillation and to sound production in the direction of airflow. This particular aerodynamics is nonlinear in that the maximum displacement amplitude in which the reed can vibrate is limited by fluctuations in damping forces, so that the resultant sound pressure is rather constant. Additionally, there is a threshold pumping pressure, below which the reed vibration is minimal. Within those two thresholds, there is an exponential growth and decay in time of reed amplitudes .
Xenakis also developed an stochastic synthesizer algorithm (used in GENDY), called dynamic stochastic synthesis, where a polygonal waveform's sectional borders' amplitudes and distance between borders may be generated using a form of random walk to create both aleatoric timbres and musical forms.Serra, 241. Further material may be generated by then refeeding the original waveform back into the function or wave forms may be superimposed. Elastic barriers or mirrors are used to keep the randomly generated values within a given finite interval, so as to not exceed limits such as the audible pitch range, avoid complete chaos (white noise), and to create a balance between stability and instability (unity and variety).
At point 0 along the fiber, the wave in polarization mode 1 induces an amplitude into mode 2 at some phase. However at point 1/2 Lb along the fiber, the same coupling coefficient between the polarization modes induces an amplitude into mode 2 which is now 180 degrees out of phase with the wave coupled at point zero, leading to cancellation. At point Lb along the fiber the coupling is again in the original phase, but at 3/2 Lb it is again out of phase and so on. The possibility of coherent addition of wave amplitudes through crosstalk over distances much larger than Lb is thus eliminated.
Second, cyclic models explain why there must be dark energy. According to these modes, the accelerated expansion caused by dark energy starts the smoothing process, the decay of dark energy to other forms of energy starts a period of slow contraction, and the slow contraction is what is responsible for smoothing and flattening the universe. Predictions: One prediction of the cyclic models is that, unlike inflation, no detectable gravitational waves are generated during the smoothing and flattening process. Instead, the only source of gravitational waves on cosmic wavelength scales are so-called “secondary gravitational waves” that are produced long after the bounce with amplitudes that are far too weak to be found in current detectors but ultimately detectable.
The RGB OSARGs follow three closely spaced period-luminosity relations, corresponding to the first, second, and third overtones of radial pulsation models for stars of certain masses and luminosities, but that dipole and quadrupole non-radial pulsations are also present leading to the semi-regular nature of the variations. The fundamental mode does not appear, and the underlying cause of the excitation is not known. Stochastic convection has been suggested as a cause, similar to solar-like oscillations. Two additional types of variation have been discovered in RGB stars: long secondary periods, which are associated with other variations but can show larger amplitudes with periods of hundreds or thousands of days; and ellipsoidal variations.
Cloze probability is defined as the probability of the target word completing that particular sentence frame. Kutas and Hillyard (1984) found that a word's N400 amplitude has a nearly inverse linear relationship with its cloze probability. That is, as a word becomes less expected in context, its N400 amplitude is increased relative to more expected words. Words that are incongruent with a context (and thus have a cloze probability of 0) elicit large N400 amplitudes as well (although the amplitude of the N400 for incongruent words is also modulated by the cloze probability of the congruent word that would have been expected in its place Relatedly, the N400 amplitude elicited by open-class words (i.e.
The aim of quantum key distribution is the distribution of identical, true random numbers to two distant parties A and B in such a way that A and B can quantify the amount of information about the numbers that has been lost to the environment (and thus is potentially in hand of an eavesdropper). To do so, sender (A) sends one of the entangled light beams to receiver (B). A and B measure repeatedly and simultaneously (taking the different propagation times into account) one of two orthogonal quadrature amplitudes. For every single measurement they need to choose whether to measure X or Y in a truly random way, independently from each other.
In two studies there were no differences in maximum amplitude between hydroxyapatite and acrylic or silicone spherical enucleation implants, thus indicating that the implant material itself may not have a bearing on implant movement as long as the muscles are attached directly or indirectly to the implant and the implant is not pegged. The motility of a nonintegrated artificial eye may be caused by at least two forces. (1) The rubbing force between the posterior surface of the artificial eye and the conjunctiva that covers the implant may cause the artificial eye to move. Because this force is likely to be approximately equal in all directions, it would cause comparable horizontal and vertical artificial eye amplitudes.
Because nucleic acids have a relatively large number of protons which are solvent-exchangeable, nucleic acid NMR is generally not done in D2O solvent as is common with other types of NMR. This is because the deuterium in the solvent would replace the exchangeable protons and extinguish their signal. H2O is used as a solvent, and other methods are used to eliminate the strong solvent signal, such as saturating the solvent signal before the normal pulse sequence ("presaturation"), which works best a low temperature to prevent exchange of the saturated solvent protons with the nucleic acid protons; or exciting only resonances of interest ("selective excitation"), which has the additional, potentially undesired effect of distorting the peak amplitudes.
The oscillation periods of the Earth as a whole are not near the astronomical periods, so its flexing is due to the forces of the moment. The tide components with a period near twelve hours have a lunar amplitude (Earth bulge/depression distances) that are a little more than twice the height of the solar amplitudes, as tabulated below. At new and full moon, the Sun and the Moon are aligned, and the lunar and the solar tidal maxima and minima (bulges and depressions) add together for the greatest tidal range at particular latitudes. At first- and third- quarter phases of the moon, lunar and solar tides are perpendicular, and the tidal range is at a minimum.
Ellipsometry measures the complex reflectance ratio \rho of a system, which may be parametrized by the amplitude component \Psi and the phase difference \Delta. The polarization state of the light incident upon the sample may be decomposed into an s and a p component (the s component is oscillating perpendicular to the plane of incidence and parallel to the sample surface, and the p component is oscillating parallel to the plane of incidence). The amplitudes of the s and p components, after reflection and normalized to their initial value, are denoted by r_s and r_p respectively. The angle of incidence is chosen close to the Brewster angle of the sample to ensure a maximal difference in r_p and r_s.
EMR during the micro-plastic deformation and crack propagation from several metals and alloys and transient magnetic field generation during necking in ferromagnetic metals were reported by Misra (1973–75), which have been confirmed and explored by several researchers. Tudik and Valuev (1980) were able to measure the EMR frequency during tensile fracture of iron and aluminum in the region 10^14 Hz by using photomultipliers. Srilakshmi and Misra (2005a) also reported an additional phenomenon of secondary electromagnetic radiation in uncoated and metal-coated metals and alloys. If a solid material is subjected to stresses of large amplitudes, which can cause plastic deformation and fracture, emissions such as thermal, acoustic, ions, exo-emissions occur.
The details of the primary mechanism was first given by Klaus Hasselmann, with a simple expression of the microseism source in the particular case of a constant sloping bottom. It turns out that this constant slope needs to be fairly large (around 5 percent or more) to explain the observed microseism amplitudes, and this is not realistic. Instead, small-scale bottom topographic features do not need to be so steep, and the generation of primary microseisms is more likely a particular case of a wave-wave interaction process in which one wave is fixed, the bottom. To visualize what happens, it is easier to study the propagation of waves over a sinusoidal bottom topography.
Even though music syntactic regularities are often simultaneously acoustical similar and music syntactic irregularities are often simultaneously acoustical different, an ERAN but not an MMN can be elicit, when a chord does not represent a physical but a syntactic deviance. To demonstrate this, so-called "Neapolitan sixth chords" are used. These are consonant chords when played solitary, but which are added into a musical phrase of in which they are only distantly related to the harmonic context. Added into a chord sequence of five chords, the addition of a Neapolitan sixth chord at the third or at the fifth position evokes different amplitudes of ERANs in the EEG with a higher amplitude at the fifth position.
A wave packet without dispersion (real or imaginary part) A wave packet with dispersion In physics, a wave packet (or wave train) is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant (no dispersion, see figure) or it may change (dispersion) while propagating.
LaRa will study the rotation of Mars as well as its internal structure, with particular focus on its core. It will observe the Martian precession rate, the nutations, and the length-of-day variations, as well as the polar motion. The precession and the nutations are variations in the orientation of Mars's rotation axis in space, the precession being the very long term motion (about 170 000 years for Mars) while the nutations are the variations with a shorter period (annual, semi-annual, ter-annual,... periods). A precise measurement of the Martian nutations enables an independent determination of the size and density of the liquid core because of a resonance in the nutation amplitudes.
The given ONU only transmits optical packet when it is allocated a time slot and it needs to transmit, and all the ONUs share the upstream channel in the time division multiplexing (TDM) mode. The phases of the BM optical packets received by the OLT are different from packet to packet, since the ONUs are not synchronized to transmit optical packet in the same phase, and the distance between OLT and given ONU are random. Since the distance between the OLT and ONUs are not uniform, the optical packets received by the OLT may have different amplitudes. In order to compensate the phase variation and amplitude variation in a short time (for example within 40 ns for GPONRec.
The other measurement consisted of the rate of mutual information transfer between the nerve signal and a broadband stimulus combined with varying levels of broadband noise uncorrelated with the signal. The power spectrum SNR could not be calculated in the same manner as before because there were signal and noise components present at the same frequencies. Mutual information measures the degree to which one signal predicts another; independent signals carry no mutual information, while perfectly identical signals carry maximal mutual information. For varying low amplitudes of signal, stochastic resonance peaks were found in plots of mutual information transfer rate as a function of input noise with a maximum increase in information transfer rate of 150%.
Blue large-amplitude pulsators were discovered by a team of astronomers from the University of Warsaw and announced in Nature Astronomy journal in June 2017. During a 2013 search for variable stars with periods shorter than one hour, a star with a period of 28.26 minutes was detected and tentatively classified as a δ Scuti variable although it had an unusually large amplitude and short period. Examination of over one billion Milky Way stars made during the OGLE project revealed another 13 objects with similar properties: periods of 22 - 39 minutes; near-infrared amplitudes of 0.19 - 0.36 magnitudes; extremely blue, suggesting temperatures around 30,000 K; and smaller than main sequence stars of that temperature.
During historical periods when instrumental music rose in prominence (relative to the voice), there was a continuous tendency for pitch levels to rise. This "pitch inflation" seemed largely a product of instrumentalists competing with each other, each attempting to produce a brighter, more "brilliant", sound than that of their rivals. (In string instruments, this is not all acoustic illusion: when tuned up, they actually sound objectively brighter because the higher string tension results in larger amplitudes for the harmonics.) This tendency was also prevalent with wind instrument manufacturers, who crafted their instruments to play generally at a higher pitch than those made by the same craftsmen years earlier."History of Pitch – The Diapason Normal", capionlarsen.
After the 1933 Long Beach earthquake in California, a large experiment campaign led by D. S. Carder in 1935 recorded and analyzed ambient vibrations in more than 200 buildings. These data were used in the design codes to estimate resonance frequencies of buildings but the interest of the method went down until the 1950s. Interest on ambient vibrations in structures grew further, especially in California and Japan, thanks to the work of earthquake engineers, including G. Housner, D. Hudson, K. Kanai, T. Tanaka, and others. In engineering, ambient vibrations were however supplanted - at least for some time - by forced vibration techniques that allow to increase the amplitudes and control the shaking source and their system identification methods.
A simple spike is a single action potential followed by a refractory period of about 10 ms; a complex spike is a stereotyped sequence of action potentials with very short inter-spike intervals and declining amplitudes. Physiological studies have shown that complex spikes (which occur at baseline rates around 1 Hz and never at rates much higher than 10 Hz) are reliably associated with climbing fiber activation, while simple spikes are produced by a combination of baseline activity and parallel fiber input. Complex spikes are often followed by a pause of several hundred milliseconds during which simple spike activity is suppressed. A specific, recognizable feature of Purkinje neurons is the expression of calbindin.
The BSL system includes data acquisition hardware with built-in universal amplifiers to record and condition electrical signals from the heart, muscle, nerve, brain, eye, respiratory system, and tissue preparations.Teaching in the laboratory: Inquiry-Based Laboratory Course Improves Students’ Ability to Design Experiments and Interpret Data Marcella J. Myers and Ann B. Burgess, Advan Physiol Educ 27:26-33, 2003. The data acquisition system receives the signals from electrodes and transducers. The electrical signals are extremely small—with amplitudes sometimes in the microVolt (1/1,000,000 of a volt) range—so the hardware amplifies these signals, filters out unwanted electrical noise or interfering signals, and converts them to a set of numbers that the computer can read.
String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory.
A highly directional receiver, such as a parabolic antenna or a diversity receiver, can be used to select one signal in space to the exclusion of others. The most extreme example of digital spread-spectrum signalling to date is ultra-wideband (UWB), which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. UWB, if used exclusively, would enable very efficient use of the spectrum, but users of non-UWB technology are not yet prepared to share the spectrum with the new system because of the interference it would cause to their receivers (the regulatory implications of UWB are discussed in the ultra-wideband article).
In the Calchaquí Valleys in Salta Province, the climate is temperate and arid with large thermal amplitudes, long summers, and a long frost-free period. In the valleys in the south in La Rioja Province, Catamarca Province and the southwest parts of Santiago del Estero Province, which is part of the arid Chaco ecoregion, temperatures during the summer are very high, averaging in January while winters are mild, averaging . Cold fronts from the south bringing cold Antarctic air can cause severe frosts in the valleys of La Rioja Province and Catamarca Province. In contrast, the Zonda wind, which occurs more often during the winter months, can raise temperatures up to with strong gusts, sometimes causing crop damage.
It reaches plus or minus 17″ in longitude and 9.2″ in obliquity. All other terms are much smaller; the next-largest, with a period of 183 days (0.5 year), has amplitudes 1.3″ and 0.6″ respectively. The periods of all terms larger than 0.0001″ (about as accurately as one can measure) lie between 5.5 and 6798 days; for some reason (as with ocean tidal periods) they seem to avoid the range from 34.8 to 91 days, so it is customary to split the nutation into long-period and short- period terms. The long-period terms are calculated and mentioned in the almanacs, while the additional correction due to the short-period terms is usually taken from a table.
Passive Intermodulation Interference in Communication Systems, P. L. Lui, Electronics & Communication Engineering Journal, Year: 1990, Volume: 2, Issue: 3, Pages: 109 - 118. The PIM product is the result of the two (or more) high power tones mixing at device nonlinearities such as junctions of dissimilar metals or metal-oxide junctions, such as loose corroded connectors. The higher the signal amplitudes, the more pronounced the effect of the nonlinearities, and the more prominent the intermodulation that occurs — even though upon initial inspection, the system would appear to be linear and unable to generate intermodulation. It is also possible for a single broadband carrier to generate PIM if it passes through a PIM generating surface or defect.
The patient's habitual prescription or an automated refractor may be used to provide initial settings for the phoropter. Sometimes a retinoscope is used through the phoropter to measure the vision without the patient having to speak, which is useful for infants and people who don't speak the language of the practitioner. Phoropters can also measure Heterophorias (natural resting position of the eyes), accommodative amplitudes, accommodative leads/lags, accommodative posture, horizontal and vertical vergences, and more. The American Optical Ultramatic RxMaster of 1967The major components of the phoropter are the battery of spherical and cylindrical lenses, auxiliary devices such as Maddox rods, filtered lenses, prisms, and the JCC (Jackson Cross-Cylinder) used for astigmatism measurement.
Pulse programming in the field of experimental physics refers to engineering sinusoidal electromagnetic waveforms to have programmable frequencies, phases, and amplitudes. The main techniques and terminology arose in the study of nuclear magnetic resonance (NMR) during the 1970s, but has since been adopted in many other experimental settings, usually associated with quantum computing experiments. These include electron spin resonance (ESR), trapped ions, quantum dots, the phase/flux/charge across a superconducting junctions, and many other quantum bit implementations. Traditionally, pulse programmers were built using hard-wired analog electronics to produce a fixed sequence of waveforms, but modern pulse programmers make use of direct digital synthesis programmable electronics controlled by a personal computer to make precisely reproducible sequences.
Low- frequency ambient noise and sound propagation were both measured by the SOSUS system. Invariably, ambient noise levels were found to be significantly lower than would have been expected from extrapolating levels that had been measured at higher frequencies during WWII. Ross was one of the first to connect this finding with information that undersea noise caused by rain and similar sources had been found to peak at frequencies between 500 and 1000 Hz and was significantly lower at the frequencies used by SOSUS. From this observation and some measurements made by Woods Hole shortly after WWII, Ross developed the first set of ambient noise spectra for which the amplitudes at low- frequencies depended on shipping densities.
The GF method, sometimes referred to as FG method, is a classical mechanical method introduced by Edgar Bright Wilson to obtain certain internal coordinates for a vibrating semi-rigid molecule, the so-called normal coordinates Qk. Normal coordinates decouple the classical vibrational motions of the molecule and thus give an easy route to obtaining vibrational amplitudes of the atoms as a function of time. In Wilson's GF method it is assumed that the molecular kinetic energy consists only of harmonic vibrations of the atoms, i.e., overall rotational and translational energy is ignored. Normal coordinates appear also in a quantum mechanical description of the vibrational motions of the molecule and the Coriolis coupling between rotations and vibrations.
Massage therapy has been used to aid in range of motion rehabilitation. Literature has shown that participants with spinal cord injuries that had massage therapy added into their rehabilitation had significant improvement observed by physical therapist in functional living activities and limb range of motion. This could be due to the decrease in H-Reflex amplitudes measured by EMG that is critical for the comfort of spinal cord injury patients for reducing cramps and spasms. ADLs can be difficult for an individual with a spinal cord injury; however, through the rehabilitation process, individuals with SCI may be able to live independently in the community with or without full-time attendant care, depending on the level of their injury.
Hawking interpreted this to mean that when black holes absorb some photons in a pure state described by a wave function, they re-emit new photons in a thermal mixed state described by a density matrix. This would mean that quantum mechanics would have to be modified because, in quantum mechanics, states which are superpositions with probability amplitudes never become states which are probabilistic mixtures of different possibilities.except in the case of measurements, which the black hole should not be performing Troubled by this paradox, Gerard 't Hooft analyzed the emission of Hawking radiation in more detail. He noted that when Hawking radiation escapes, there is a way in which incoming particles can modify the outgoing particles.
In 1952 in Paris, at Pierre Schaeffer's Groupe de Recherches de Musique concrète, Stockhausen had already acquired some experience with various sound and tape editing processes. From this he knew that pitches, durations, and amplitudes could in fact be determined very accurately, but timbre eluded serial organisation. Soon after his arrival, Stockhausen came to regard the Monochord and Melochord (which had been purchased on the recommendation of Meyer-Eppler) as useless for the production of music that was to be organised in all its aspects, especially timbre. He turned to Fritz Enkel, the head of the calibration and testing department, and asked for a sine-wave generator or a beat-frequency oscillator capable of producing sine waves, from which Stockhausen intended to build sound spectra.
Schematic of bench and industrial-scale ultrasonic liquid processors Substantial intensity of ultrasound and high ultrasonic vibration amplitudes are required for many processing applications, such as nano- crystallization, nano-emulsification, deagglomeration, extraction, cell disruption, as well as many others. Commonly, a process is first tested on a laboratory scale to prove feasibility and establish some of the required ultrasonic exposure parameters. After this phase is complete, the process is transferred to a pilot (bench) scale for flow-through pre-production optimization and then to an industrial scale for continuous production. During these scale-up steps, it is essential to make sure that all local exposure conditions (ultrasonic amplitude, cavitation intensity, time spent in the active cavitation zone, etc.) stay the same.
P. Richards and C. FrasierRichards, P. G., and Frasier, C. W., 1976, Scattering of elastic wave from depth-dependent inhomogeneities: Geophysics, 41, 441–458 expanded the terms for the reflection and transmission coefficients for a P-wave incident upon a solid-solid interface and simplified the result by assuming only small changes in elastic properties across the interface. Therefore, the squares and differential products are small enough to tend to zero and be removed. This form of the equations allows one to see the effects of density and P- or S- wave velocity variations on the reflection amplitudes. This approximation was popularized in the 1980 book Quantitative Seismology by K. Aki and P. Richards and has since been commonly referred to as the Aki and Richards approximation.
Distortion of wave groups by higher-order dispersion effects, for surface gravity waves on deep water (with ). This shows the superposition of three wave components—with respectively 22, 25 and 29 wavelengths fitting in a periodic horizontal domain of 2 km length. The wave amplitudes of the components are respectively 1, 2 and 1 meter. Part of the previous derivation is the Taylor series approximation that: :\omega(k) \approx \omega_0 + (k - k_0)\omega'_0(k_0) If the wavepacket has a relatively large frequency spread, or if the dispersion has sharp variations (such as due to a resonance), or if the packet travels over very long distances, this assumption is not valid, and higher-order terms in the Taylor expansion become important.
It has previously been shown that repeated short trains of action potentials causes an exponential decay of the synaptic response amplitudes in the neurons of many neural networks, specifically the caudal pontine reticular nucleus (PnC). Recent research has suggested that only repeated burst stimulation, as opposed to single or paired pulse stimulation, at a very high frequency can result in SF. Some cells like aortic baroreceptor neurons could have devastating effects including the inability to regulate aortic blood pressure if the onset of synaptic fatigue were to affect them. Metabotropic glutamate autoreceptor activation in these neurons may inhibit synaptic transmission by inhibiting calcium influx, decreasing synaptic vesicle exocytosis and modulating the mechanisms governing synaptic vesicle recovery and endocytosis.Hay, M., Hoang, C. J., & Pamidimukkala, J. (2001).
Radar designers try to use the highest PRF possible commensurate with the other factors that constrain it, as described below. There are two other facets related to PRF that the designer must weigh very carefully; the beamwidth characteristics of the antenna, and the required periodicity with which the radar must sweep the field of view. A radar with a 1° horizontal beamwidth that sweeps the entire 360° horizon every 2 seconds with a PRF of 1080 Hz will radiate 6 pulses over each 1-degree arc. If the receiver needs at least 12 reflected pulses of similar amplitudes to achieve an acceptable probability of detection, then there are three choices for the designer: double the PRF, halve the sweep speed, or double the beamwidth.
In perturbation theory, quantities called probability amplitudes, which determine the probability for various physical processes to occur, are expressed as sums of infinitely many terms, where each term is proportional to a power of the coupling constant g: : A=A_0+A_1g+A_2g^2+A_3g^3+\dots. In order for such an expression to make sense, the coupling constant must be less than 1 so that the higher powers of g become negligibly small and the sum is finite. If the coupling constant is not less than 1, then the terms of this sum will grow larger and larger, and the expression gives a meaningless infinite answer. In this case the theory is said to be strongly coupled, and one cannot use perturbation theory to make predictions.
The theory can be applied without restrictions to any prismatic thin-walled structural member exhibiting straight or curved axial axis (any loading, any cross-section geometry, any boundary conditions). GBT is in some ways analogous to the finite strip method and can be a more computationally efficient method than modeling a beam with a full 2D or 3D finite element method to predict the member structural behavior. GBT has been widely recognized as an efficient approach to analyzing thin- walled members and structural systems. The efficiency arises mostly from its modal nature – the displacement field is expressed as a linear combination of cross-section deformation modes whose amplitudes vary continuously along the member length (x axis) - see Figures 2-3.
This means that most atmospheric tides have periods of oscillation related to the 24-hour length of the solar day whereas ocean tides have periods of oscillation related both to the solar day as well as to the longer lunar day (time between successive lunar transits) of about 24 hours 51 minutes. # Atmospheric tides propagate in an atmosphere where density varies significantly with height. A consequence of this is that their amplitudes naturally increase exponentially as the tide ascends into progressively more rarefied regions of the atmosphere (for an explanation of this phenomenon, see below). In contrast, the density of the oceans varies only slightly with depth and so there the tides do not necessarily vary in amplitude with depth.
Instruments with mechanical keys are available (usually not in natural bamboo whose irregular shape would complicate construction), which expands the range upwards, or upwards and downwards a few notes. For a diatonic scale, the lower two notes are in the fundamental mode of the reed, and the rest of the range is overblown, exciting the vibratory mode of the resonating pipe. The lowest scale degree, and the lowest overblown note are a minor third apart and fingered the same way; this unusually narrow overblowing behavior suggests the instrument has some irregular overtones outside of the standard harmonic series. The lowest part of the bawu range is very rich in upper harmonics, the lowest of which have amplitudes almost equivalent to that of the fundamental frequency.
It is necessary to monitor each pulsar roughly once a week; a higher cadence of observation would allow the detection of higher-frequency gravitational waves, but it is unclear whether there would be loud enough astrophysical sources at such frequencies. It is not possible to get particularly accurate sky locations for the sources by this method - analysing timings for twenty pulsars would produce a region of uncertainty of 100 square degrees, a patch of sky about the size of the constellation Scutum which would contain at least thousands of merging galaxies. The main goal of PTA's is measuring the amplitude of background gravitational waves caused by a history of supermassive black hole mergers. The amplitudes can describe the history of how galaxies were formed.
Surge Impedance Loading on Losslessline The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in the absence of reflections in the other direction. Alternatively and equivalently it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is Ohm (Ώ) Surge impedance determines the loading capability of the line and reflection coefficient of the current or voltage propagating waves.
Other electrophysiological monitoring techniques such as evoked spinal cord potential (ESCP), somatosensory evoked potential (SEP) and SSEP (short-latency SEP) could be coupled with ECG, which then present excitatory ECG-triggered SSEP technique. The amplitude of the EP or evoked response is usually interpreted as the severity of the biological entities' response toward the applied electromagnetic field. Evoked potentials are merely acquired when the applied excitation is more than the excitation threshold of the biological entity. In such cases, excitatory input voltages are applied in different modes, by a stimulation rate of 0.1 to 100 Hz, current stimulation amplitudes of 0 to 200 mA and load resistance of 1 kΩ, which gives 0-200 mV amplitude (in case of constant resistance) and 40 mW electrical power.
It was found that a combination of the jitter and blocking rate of the acetylcholine receptors caused a reduced end-plate potential similar to what is seen in cases of myasthenia gravis. Research of motor unit potentials (MUPs) has led to possible clinical applications in the evaluation of the progression of pathological diseases to myogenic or neurogenic origins by measuring the irregularity constant related. Motor unit potentials are the electrical signals produced by motor units that can be characterized by amplitude, duration, phase, and peak, and the irregularity coefficient (IR) is calculated based on the peak numbers and amplitudes. Lambert-Eaton myasthenic syndrome is a disorder where presynaptic calcium channels are subjected to autoimmune destruction which causes fewer neurotransmitter vesicles to be exocytosed.
The zero value field is at a local maximum rather than a local minimum of its potential energy, much like a ball at the top of a hill. A very small impulse (which will always happen due to quantum fluctuations) will lead the field to roll down with exponentially increasing amplitudes toward the local minimum. In this way, tachyon condensation drives a physical system that has reached a local limit and might naively be expected to produce physical tachyons, to an alternate stable state where no physical tachyons exist. Once the tachyonic field reaches the minimum of the potential, its quanta are not tachyons any more but rather are ordinary particles with a positive mass-squared, such as the Higgs boson.
Coherent backscattering has its origin in the interference between direct and reverse paths in the backscattering direction. When a multiply scattering medium is illuminated by a laser beam, the scattered intensity results from the interference between the amplitudes associated with the various scattering paths; for a disordered medium, the interference terms are washed out when averaged over many sample configurations, except in a narrow angular range around exact backscattering where the average intensity is enhanced. This phenomenon, is the result of many sinusoidal two-waves interference patterns which add up. The cone is the Fourier transform of the spatial distribution of the intensity of the scattered light on the sample surface, when the latter is illuminated by a point-like source.
The operation of a lock-in amplifier relies on the orthogonality of sinusoidal functions. Specifically, when a sinusoidal function of frequency f1 is multiplied by another sinusoidal function of frequency f2 not equal to f1 and integrated over a time much longer than the period of the two functions, the result is zero. Instead, when f1 is equal to f2 and the two functions are in phase, the average value is equal to half of the product of the amplitudes. In essence, a lock-in amplifier takes the input signal, multiplies it by the reference signal (either provided from the internal oscillator or an external source), and integrates it over a specified time, usually on the order of milliseconds to a few seconds.
Japanese manufacturer Akai, however, persisted with cross-field bias and successfully marketed portable and mains- operated machines featuring the cross-field system. Different amplitudes of bias field are optimal for different types of tape, so most recorders offer a bias setting switch on the control panel, or, in the case of the compact audio cassette, may switch automatically according to cutouts on the cassette shell. Ferric-based tapes require the lowest bias field, while chrome-based tapes (including the pseudo-chromes) requiring a higher level, and metal-particle tapes requires even more. Metal-evaporated tape accepts the highest level of bias, but it is mostly used for digital recording (which does not use bias, as the non-linearity is not a major problem).
A helical strake on a chimney stack Fairings can be fitted to a structure to streamline the flow past the structure, such as on an aircraft wing. Tall metal smokestacks or other tubular structures such as antenna masts or tethered cables can be fitted with an external corkscrew fin (a strake) to deliberately introduce turbulence, so the load is less variable and resonant load frequencies have negligible amplitudes. The effectiveness of helical strakes for reducing vortex induced vibration was discovered in 1957 by Christopher Scruton and D. E. J. Walshe at the National Physics Laboratory in Great Britain.Scruton, C.; Walshe, D.E.J. (October 1957) "A means for avoiding wind-excited oscillations of structures with circular or nearly circular cross section" National Physics Laboratory (Great Britain), Aerodynamics Report 335.
Schematic of bench and industrial-scale ultrasonic liquid processors Substantial ultrasonic intensity and high ultrasonic vibration amplitudes are required for many processing applications, such as nano-crystallization, nano- emulsification, deagglomeration, extraction, cell disruption, as well as many others. Commonly, a process is first tested on a laboratory scale to prove feasibility and establish some of the required ultrasonic exposure parameters. After this phase is complete, the process is transferred to a pilot (bench) scale for flow-through pre-production optimization and then to an industrial scale for continuous production. During these scale-up steps, it is essential to make sure that all local exposure conditions (ultrasonic amplitude, cavitation intensity, time spent in the active cavitation zone, etc.) stay the same.
Schematic of ultrasonic machining process An ultrasonic drill from 1955 Ultrasonic machining, or strictly speaking the "Ultrasonic vibration machining", is a subtraction manufacturing process that removes material from the surface of a part through high frequency, low amplitude vibrations of a tool against the material surface in the presence of fine abrasive particles. The tool travels vertically or orthogonal to the surface of the part at amplitudes of 0.05 to 0.125 mm (0.002 to 0.005 in.). The fine abrasive grains are mixed with water to form a slurry that is distributed across the part and the tip of the tool. Typical grain sizes of the abrasive material range from 100 to 1000, where smaller grains (higher grain number) produce smoother surface finishes.
Mira, the prototype of the Mira variables Mira variables (named for the prototype star Mira) are a class of pulsating stars characterized by very red colours, pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 2.5 magnitude at visual wavelengths. They are red giants in the very late stages of stellar evolution, on the asymptotic giant branch (AGB), that will expel their outer envelopes as planetary nebulae and become white dwarfs within a few million years. Mira variables are stars massive enough that they have undergone helium fusion in their cores but are less than two solar masses, stars that have already lost about half their initial mass. However, they can be thousands of times more luminous than the Sun due to their very large distended envelopes.
In acoustics, microbaroms, also known as the "voice of the sea", are a class of atmospheric infrasonic waves generated in marine storms by a non-linear interaction of ocean surface waves with the atmosphere. They typically have narrow-band, nearly sinusoidal waveforms with amplitudes up to a few microbars, and wave periods near 5 seconds (0.2 hertz). Due to low atmospheric absorption at these low frequencies, microbaroms can propagate thousands of kilometers in the atmosphere, and can be readily detected by widely separated instruments on the Earth's surface. Microbaroms are a significant noise source that can potentially interfere with the detection of infrasound from nuclear explosions that is a goal of the International Monitoring System organized under the Comprehensive Nuclear-Test-Ban Treaty (which has not entered into force).
Since they do not require any mechanical movement, battery storage power plants allow extremely short control times and start times in the range of few 10s of ms at full load. Batteries are commonly used both for peak shaving of up to a few hours, and to dampen the fast oscillations (second) that appear when electrical power networks are operated close to their maximum capacity. These instabilities are voltage fluctuations with periods of up to several tens of seconds and can soar, in worst cases, to high amplitudes which can lead to regional blackouts. A properly sized battery storage power plant can efficiently counteract these oscillations; therefore, applications are found primarily in those regions where electrical power systems are operated at full capacity causing a risk in the grid stability.
Using a simple decomposition, the discrete Fourier transform on 2^n amplitudes can be implemented as a quantum circuit consisting of only O(n^2) Hadamard gates and controlled phase shift gates, where n is the number of qubits. This can be compared with the classical discrete Fourier transform, which takes O(n2^n) gates (where n is the number of bits), which is exponentially more than O(n^2). However, the quantum Fourier transform acts on a quantum state, whereas the classical Fourier transform acts on a vector, so not every task that uses the classical Fourier transform can take advantage of this exponential speedup. The best quantum Fourier transform algorithms known (as of late 2000) require only O(n \log n) gates to achieve an efficient approximation.
He was part of a team assembled by Daniele Amati to work on the theory originally known as the dual resonance model but shortly to be recognised as string theory. In CERN, Olive began the collaborations with the circle of string theorists many of whom feature in his memoir From Dual Fermion to Superstring. His work at CERN, in part in collaboration with Lars Brink and Ed Corrigan, initially focused on the consistent formulation of dual fermion amplitudes, generalising the existing bosonic models. This period saw several of Olive's major contributions to string theory, including the Gliozzi-Scherk-Olive (GSO) projection which elucidated the role of spacetime supersymmetry in ensuring consistency of the dual fermion model and was to prove an essential step in establishing 10-dimensional superstring theory.
Long-period tides are gravitational tides with periods longer than one day, typically with amplitudes of a few centimeters or less. Long-period tidal constituents with relatively strong forcing include the lunar fortnightly (Mf) and lunar monthly (Ms) as well as the solar semiannual (Ssa) and solar annual (Sa) constituents. An analysis of the changing distance of the Earth relative to Sun, Moon, and Jupiter by Pierre-Simon de Laplace in the 18th century showed that the periods at which gravity varies cluster into three species: the semi-diurnal and the diurnal tide constituents, which have periods of a day or less, and the long-period tidal constituents. In addition to having periods longer than a day, long-period tidal forcing is distinguished from that of the first and second species by being zonally symmetric.
Miguel Onorato, Lara Vozella, Davide Proment, Yuri V. Lvov, (2015) A route to thermalization in the α-Fermi–Pasta–Ulam system ArXiv 1402.1603. Rewriting the FPUT model in terms of normal modes, the non-linear term expresses itself as a three-mode interaction (using the language of statistical mechanics, this could be called a "three-phonon interaction".) It is, however, not a resonant interaction,A resonant interaction is one where all of the wave-vectors add/subtract to zero, modulo the Brillouin zone, as well as the corresponding frequencies obtained from the dispersion relation. Since they sum to zero, there is no preferred vector basis for the corresponding vector space, and so all amplitudes can be re-arranged freely. In effect, this places all modes into the same ergodic component, where they can mix "instantly".
In the case of the circularly polarized light, the field strength remains constant from plane to plane but its direction steadily changes in a rotary type manner. Not indicated in either illustration is the electric field’s corresponding magnetic field which is proportional in strength to the electric field at each point in space but is at a right angle to it. Illustrations of the magnetic field vectors would be virtually identical to these except all the vectors would be rotated 90 degrees about the axis of propagation so that they were perpendicular to both the direction of propagation and the electric field vector. The ratio of the amplitudes of the electric and magnetic field components of a plane wave in free space is known as the free-space wave- impedance, equal to 376.730313 ohms.
This can also be heard on sophisticated lightning detectors as individual staccato sounds for each stroke, forming a distinctive pattern. Single sensor lightning detectors have been used on aircraft and while the lightning direction can be determined from a crossed loop sensor, the distance can not be determined reliably because the signal amplitude varies between the individual strokes described above, and these systems use amplitude to estimate distance. Because the strokes have different amplitudes, these detectors provide a line of dots on the display like spokes on a wheel extending out radially from the hub in the general direction of the lightning source. The dots are at different distances along the line because the strokes have different intensities. These characteristic lines of dots in such sensor displays are called “radial spread”.
The regular behavior of the Cepheids has been successfully modeled with numerical hydrodynamics since the 1960s, and from a theoretical point of view it is easily understood as due to the presence of center manifold which arises because of the weakly dissipative nature of the dynamical system. This, and the fact that the pulsations are weakly nonlinear, allows a description of the system in terms of amplitude equations and a construction of the bifurcation diagram (see also bifurcation theory) of the possible types of pulsation (or limit cycles), such fundamental mode pulsation, first or second overtone pulsation, or more complicated, double- mode pulsations in which several modes are excited with constant amplitudes. The boundaries of the instability strip where pulsation sets in during the star's evolution correspond to a Hopf bifurcation.
A strategy for addressing this problem has been suggested; the idea is to study the boundary amplitude, namely a path integral over a finite space-time region, seen as a function of the boundary value of the field. In conventional quantum field theory, this boundary amplitude is well–defined and codes the physical information of the theory; it does so in quantum gravity as well, but in a fully background–independent manner. A generally covariant definition of n-point functions can then be based on the idea that the distance between physical points –arguments of the n-point function is determined by the state of the gravitational field on the boundary of the spacetime region considered. Progress has been made in calculating background independent scattering amplitudes this way with the use of spin foams.
This is because in quantum theory the state of a particle or system is represented by a complex probability amplitude (wavefunction) ψ, and when the system is measured, the probability of finding the system in the state ψ equals , the square of the absolute value of the amplitude. In mathematical terms, the quantum Hilbert space carries a projective representation of the rotation group SO(3). Suppose a detector that can be rotated measures a particle in which the probabilities of detecting some state are affected by the rotation of the detector. When the system is rotated through 360°, the observed output and physics are the same as initially but the amplitudes are changed for a spin- particle by a factor of −1 or a phase shift of half of 360°.
The theoretical amplitude of oceanic tides caused by the Moon is about at the highest point, which corresponds to the amplitude that would be reached if the ocean possessed a uniform depth, there were no landmasses, and the Earth were rotating in step with the Moon's orbit. The Sun similarly causes tides, of which the theoretical amplitude is about (46% of that of the Moon) with a cycle time of 12 hours. At spring tide the two effects add to each other to a theoretical level of , while at neap tide the theoretical level is reduced to . Since the orbits of the Earth about the Sun, and the Moon about the Earth, are elliptical, tidal amplitudes change somewhat as a result of the varying Earth–Sun and Earth–Moon distances.
Because of its size, presence of a quick feedback network, and abundance of electrical and quasi-electrical (ephaptic) synapses, the Mauthner cell has a strong field potential of a very characteristic shape. This field potential starts with a high-amplitude potential sink up to tens of millivolts in amplitude that originates from the Mauthner cell discharge, and which is closely followed by a positive potential, called Extrinsic Hyperpolarizing Potential or EHP, which is associated with the activity of the recurrent feedback network. Due to its high amplitude, in some animals the negative part of Mauthner cell field potential can be detected up to several hundred micrometres away from the cell itself. The positive components of the field potential are strongest in the axon cap, reaching amplitudes of 45 mV in adult goldfish.
Munir Ahmad Rashid had contributed in Scattering theory where he had solved the mathematics problems in scattering theory, mainly predicting the scattering of optical waves and the behaviour of the elementary particles in the general process of testing of the nuclear device. Rashid also had applied the Hamiltonian harmonic oscillator theory to approximate the optical wavelengths and the transition amplitudes of the Quantum particles in the tested nuclear device. To approximate the data and the position of the nuclear particles and their effect in an affected nuclear test sites, Rashid used complex mathematical series, Integrals and mathematical permutation where he published his work under the supervision of Abdus Salam at the PAEC. Rashid continued his research at the PAEC, and left Pakistan in 1978, to join Abdus Salam in London, Great Britain.
Scientists at NCTS work on the following major research subjects and research topics: High Energy Phenomenology, String and Gravity: dark matter, dark energy, nature of electroweak symmetry breaking, neutrino physics, collider physics, holographic and quantum informatic property of gravity, scattering amplitudes, inflationary cosmology, quantum geometry and branes, exact results in QFT. Condensed Matter Physics: first principle calculations of new quantum materials, topological materials, spintronics, strongly correlated system, DMRG and tensor network, emergent symmetry, quantum transport. Atomic, Molecular and Optical Physics: many-body dynamics of ultracold atoms, long-range effects, light-atom interaction and quantum control, quantum steering and quantum information. Soft Matters, Bio-Physics and Complex Systems: complex and biological network, complex dynamics and chaos, nonequilibrium statistical physics of driven/active soft matter, interplay of proliferation, utilization and feedback regulations in complex interacting system.
When Sugawara was still a graduate student at the University of Tokyo, he derived a relation for non-leptonic hyperon decay amplitudes called "Lee-Sugawara relation" while studying the symmetry of weak interactions. He received his doctorate from the University of Tokyo in 1966, and has held postdoctoral research positions at Cornell University, University of California, Berkeley, and University of Chicago. Upon his return to Japan in 1968, he became a research associate at Tokyo University of Education, and he joined the University of Tokyo as an assistant professor in 1971. "A Field Theory of Currents" is known as the ""Sugawara model," a dynamical model of local currents, in which the energy momentum tensor was expressed as a product of currents," which opened the door to the algebraic formulation of field theories.
Extracellular measurement: Captures spikes with lower amplitudes, often from several spiking sources, depending on the size of the electrode and its proximity to the sources. Despite the decreased amplitude levels produced by this technique, it also has several advantages: 1) Is easier to obtain experimentally; 2) Is robust and lasts for a longer time; 3) Can reflect the dominant effect, especially when conducted in an anatomical region with many similar cells. Although it is not unusual in science and engineering to have several descriptive models for different abstraction/detail levels, the number of different, sometimes contradicting, biological neuron models is exceptionally high. This situation is partly the result of the many different experimental settings, and the difficulty to separate the intrinsic properties of a single neuron from measurements effects and interactions of many cells (network effects).
A major reason for the large thermal amplitude is that during the day, there is intense radiation from the sun, causing the land to heat up while during the night, there is less radiation, causing the land to cool and temperatures to fall down. Mean temperatures in the warmest month in the Quebrada de Humahuaca valley range from in Humahuaca at the higher altitudes to in Volcan at the lower altitudes; in the coldest month, the mean temperature ranges from . The mean annual temperatures in the Quebrada de Humahuaca valley ranges from , depending on altitude. In the Calchaquí Valleys in Salta province, the climate is similar to the valleys in La Rioja province and Catamarca province, by being temperate and arid with large thermal amplitudes, long summers, and a long frost free period which varies depending on altitude.
Markham, "Introduction", Tractatus de globis, pp. xlii–xliii. The second part described planets, fixed stars and constellations; while the third part described the lands and seas shown on the terrestrial globe, and discussed the length of the circumference of the earth and of a degree of a great circle.Markham, "Introduction", Tractatus de globis, p. xlii. Part 4, which Hues considered the most important part of the work, explained how the globes enabled seamen to determine the sun's position, latitude, course and distance, amplitudes and azimuths, and time and declination.Markham, "Introduction", Tractatus de globis, pp. xlii and xlvi. The final part of the work contained a treatise inspired by Harriot on rhumb lines. In the work, Hues also published for the first time the six fundamental navigational propositions involved in solving what was later termed the "nautical triangle" used for plane sailing.
Amsaw Segmental stabilizer Since carbide saw blades are circular, they are radially the stiffest elements of the power train in the direction of the feed, but very unstable perpendicular to the feed direction. Due to the thin blade body the blades must be stabilized to minimize the side vibration amplitudes. When the first experiments with carbide saws were made, a development engineer of Advanced Machine & Engineering in Rockford stabilized the blade by using a broomstick which he pushed against the vibrating blade, minimizing the vibrations. From this experience a blade stabilizer was developed using two plastic coated ball bearings mounted on eccentric shafts and supported by a welded bracket to the gearbox. Horst Doepcke, who saw this method during experiments carried out by Metalcut, also describes them in his dissertation “Sägen von Rohren mit hartmetallbestückten Kreissägeblättern”.
Fresnel developed an equation using the Huygens wavelets together with the principle of superposition of waves, which models these diffraction effects quite well. It is not a straightforward matter to calculate the displacement (amplitude) given by the sum of the secondary wavelets, each of which has its own amplitude and phase, since this involves addition of many waves of varying phase and amplitude. When two waves are added together, the total displacement depends on both the amplitude and the phase of the individual waves: two waves of equal amplitude which are in phase give a displacement whose amplitude is double the individual wave amplitudes, while two waves which are in opposite phases give a zero displacement. Generally, a two-dimensional integral over complex variables has to be solved and in many cases, an analytic solution is not available.
Further Varyukhin V.A. developed a general theory of multichannel analyzers, based on the processing of information contained in the distribution of complex voltage amplitudes at the outputs of the digital antenna array. An important milestone in the recognition of the scientific results of Varyukhin V.A. was the defence of his doctor of science dissertation, held in 1967. A distinctive feature of developed by him theoretical foundations is the maximum automation of the process of assessment of the coordinates and parameters of signals, whereas an approach based on the generation of the response function of seismic multichannel analyzer and assessment of its resolution capabilities on the basis of visual impressions was just arisen at that time. What is meant here is a Capon methodJ. Capon, “High–Resolution Frequency–Wavenumber Spectrum Analysis,” Proceedings of the IEEE, 1969, Vol.
Two kinds of large-scale atmospheric waves within the lower atmosphere exist internal waves with finite vertical wavelengths which can transport wave energy upward; and external waves with infinitely large wavelengths that cannot transport wave energy.Volland, H., "Atmospheric Tidal and Planetary Waves", Kluwer, Dordrecht, 1988 Atmospheric gravity waves and most of the atmospheric tides generated within the troposphere belong to the internal waves. Their density amplitudes increase exponentially with height so that at the mesopause these waves become turbulent and their energy is dissipated (similar to breaking of ocean waves at the coast), thus contributing to the heating of the thermosphere by about 250 K in eq.(2). On the other hand, the fundamental diurnal tide labeled (1, −2) which is most efficiently excited by solar irradiance is an external wave and plays only a marginal role within the lower and middle atmosphere.
Loop quantum gravity is formulated in a background-independent language. No spacetime is assumed a priori, but rather it is built up by the states of theory themselves – however scattering amplitudes are derived from n-point functions (Correlation function) and these, formulated in conventional quantum field theory, are functions of points of a background space-time. The relation between the background-independent formalism and the conventional formalism of quantum field theory on a given spacetime is far from obvious, and it is far from obvious how to recover low-energy quantities from the full background- independent theory. One would like to derive the n-point functions of the theory from the background-independent formalism, in order to compare them with the standard perturbative expansion of quantum general relativity and therefore check that loop quantum gravity yields the correct low-energy limit.
Perturbative predictions by quantum field theory about quantum scattering of elementary particles, implied by a corresponding Lagrangian density, are computed using the Feynman rules, a regularization method to circumvent ultraviolet divergences so as to obtain finite results for Feynman diagrams containing loops, and a renormalization scheme. Regularization method results in regularized n-point Green's functions (propagators), and a suitable limiting procedure (a renormalization scheme) then leads to perturbative S-matrix elements. These are independent of the particular regularization method used, and enable one to model perturbatively the measurable physical processes (cross sections, probability amplitudes, decay widths and lifetimes of excited states). However, so far no known regularized n-point Green's functions can be regarded as being based on a physically realistic theory of quantum-scattering since the derivation of each disregards some of the basic tenets of conventional physics (e.g.
Different brain states are the result of different patterns of neural interaction. These patterns lead to waves characterized by different amplitudes and frequencies; for example waves between 12 and 30 hertz, Beta Waves, are associated with concentration while waves between 8 and 12 hertz, Alpha Waves, are associated with relaxation and a state of mental calm. (The contraction of muscles is also associated with unique wave patterns, isolating these patterns is how some NeuroSky devices detect blinks.) All electrical activity produces these waves (even light bulbs), thus all electrical devices create some level of ambient “noise”; this “noise” interferes with the waves emanating from the brain, this is why most EEG devices will pick up readings even if they are not on a person's head. Measuring mental activity through these waves is like trying to eavesdrop on a conversation at a loud concert.
Peter Jenni participated in CERN experiments at the Synchrocyclotron (1972/3), at the Proton Synchrotron (1974/6), and as ETHZ Research Associate at the Intersecting Storage Rings (ISR) (1976/7), the first high-energy hadron collider. From 1974 to summer 1976 he worked as a CERN Fellow in the group of M. Ferro-Luzzi. The group measured the Coulomb nuclear interference scattering of π±, K± and p± on hydrogen and deuterium in two experiments at the CERN PS. The measured real parts of the forward scattering amplitudes were used in dispersion relations. One of these measurements was the subject of the doctoral thesis (H. Hofer). From 1976 to 1977 Research Associate at the Swiss Federal Institute of Technology in Zürich (ETHZ) working in the CERN-ETH- Saclay collaboration R702 at the CERN Intersecting Storage Rings (P.
We can derive a Patterson map for the intensities, which is an interatomic vector map created by squaring the structure factor amplitudes and setting all phases to zero. This vector map contains a peak for each atom related to every other atom, with a large peak at 0,0,0, where vectors relating atoms to themselves "pile up". Such a map is far too noisy to derive any high resolution structural information--however if we generate Patterson maps for the data derived from our unknown structure, and from the structure of a previously solved homologue, in the correct orientation and position within the unit cell, the two Patterson maps should be closely correlated. This principle lies at the heart of MR, and can allow us to infer information about the orientation and location of an unknown molecule with its unit cell.
Electromagnetic (e.g. radio or light) waves are conceptually pure single frequency phenomena while pulses may be mathematically thought of as composed of a number of pure frequencies that sum and nullify in interactions that create a pulse train of the specific amplitudes, PRRs, base frequencies, phase characteristics, et cetera (See Fourier Analysis). The first term (PRF) is more common in device technical literature (Electrical Engineering and some sciences), and the latter (PRR) more commonly used in military-aerospace terminology (especially United States armed forces terminologies) and equipment specifications such as training and technical manuals for radar and sonar systems. The reciprocal of PRF (or PRR) is called the pulse repetition time (PRT), pulse repetition interval (PRI), or inter-pulse period (IPP), which is the elapsed time from the beginning of one pulse to the beginning of the next pulse.
Physiologically, each spectral pitch depends on both temporal and spectral aspects (i.e. periodicity of the waveform and position of excitation on the basilar membrane), but in Terhardt's approach the spectral pitch itself is a purely experiential parameter, not a physical parameter: it is the outcome of a psychoacoustical experiment in which the conscious listener plays an active role. Psychoacoustic measurements and models can predict which partials are "perceptually relevant" in a given complex tone; they are perceptually relevant if you can hear a difference in the whole sound if the frequency or amplitude of a partial is changed). The ear has evolved to separate spectral frequencies, because due to reflection and superposition in everyday environments spectral frequencies are more reliably carriers of environmental information than spectral amplitudes, which in turn are more reliable carriers of environmentally relevant information than phase relationships between partials (when perceived monoaurally).
Microbaroms were first described in United States in 1939 by American seismologists Hugo Benioff and Beno Gutenberg at the California Institute of Technology at Pasadena, based on observations from an electromagnetic microbarograph, consisting of a wooden box with a low- frequency loudspeaker mounted on top. They noted their similarity to microseisms observed on seismographs, and correctly hypothesized that these signals were the result of low pressure systems in the Northeast Pacific Ocean. In 1945, Swiss geoscientist L. Saxer showed the first relationship of microbaroms with wave height in ocean storms and microbarom amplitudes. Following up on the theory of microseisms by M. S. Longuet-Higgins, Eric S. Posmentier proposed that the oscillations of the center of gravity of the air above the Ocean surface on which the standing waves appear were the source of microbaroms, explaining the doubling of the ocean wave frequency in the observed microbarom frequency.
An online demonstration is available to show the principle of operation of a 7-component version of a tide- predicting machine otherwise like Thomson's (Kelvin's) original design.See American Mathematical Society/Bill Casselman (2009), animated JAVA simulation based on Kelvin's Tide Predicting Machine (the animation shows computing 7 harmonic components). The animation shows part of the operation of the machine: the motions of several pulleys can be seen, each moving up and down to simulate one of the tidal frequencies; and the animation also shows how these sinusoidal motions were generated by wheel rotations and how they were combined to form the resulting tidal curve. Not shown in the animation is the way in which the individual motions were generated in the machine at the correct relative frequencies, by gearing in the correct ratios, or how the amplitudes and starting phase angles for each motion were set in an adjustable way.
Knott's house at 42 Upper Gray Street, Edinburgh Upon his return to Edinburgh, Knott took up the position of a Reader in Applied Mathematics at Edinburgh University and held this post until his death in 1922. While in Japan, Knott began to develop mathematical equations describing how seismic vibrations are reflected and transmitted across the boundary between seawater and seabed. After returning to Edinburgh University in 1892, he expanded upon this research to describe the behaviour of earthquake waves at the interface between two different types of rock. Knott's equations, derived in terms of potentials, were the first to describe the amplitudes of reflected and refracted waves at non-normal incidenceSheriff, R. E., Geldart, L. P., (1995), 2nd edition, Exploration Seismology, Cambridge University Press and together with the Zoeppritz equations are now the basis for modern reflection seismology – an important technique in hydrocarbon exploration.
The original formulation of Counterfactual Quantum Computation stated that a set m of measurement outcomes is a counterfactual outcome if (1) there is only one history associated to m and that history contains only "off" (non-running) states, and (2) there is only a single possible computational output associated to m. A refined definition of counterfactual computation expressed in procedures and conditions is: (i) Identify and label all histories (quantum paths), with as many labels as needed, which lead to the same set m of measurement outcomes, and (ii) coherently superpose all possible histories. (iii) After cancelling the terms (if any) whose complex amplitudes together add to zero, the set m of measurement outcomes is a counterfactual outcome if (iv) there are no terms left with the computer-running label in their history labels, and (v) there is only a single possible computer output associated to m.
The event can be understood only while considering the coupled aerodynamic and structural system that requires rigorous mathematical analysis to reveal all the degrees of freedom of the particular structure and the set of design loads imposed. Vortex-induced vibration is a far more complex process that involves both the external wind-initiated forces and internal self-excited forces that lock on to the motion of the structure. During lock-on, the wind forces drive the structure at or near one of its natural frequencies, but as the amplitude increases this has the effect of changing the local fluid boundary conditions, so that this induces compensating, self-limiting forces, which restrict the motion to relatively benign amplitudes. This is clearly not a linear resonance phenomenon, even if the bluff body has itself linear behaviour, since the exciting force amplitude is a nonlinear force of the structural response.
This causes a variation in the tidal force and theoretical amplitude of about ±18% for the Moon and ±5% for the Sun. If both the Sun and Moon were at their closest positions and aligned at new moon, the theoretical amplitude would reach . Real amplitudes differ considerably, not only because of depth variations and continental obstacles, but also because wave propagation across the ocean has a natural period of the same order of magnitude as the rotation period: if there were no land masses, it would take about 30 hours for a long wavelength surface wave to propagate along the Equator halfway around the Earth (by comparison, the Earth's lithosphere has a natural period of about 57 minutes). Earth tides, which raise and lower the bottom of the ocean, and the tide's own gravitational self attraction are both significant and further complicate the ocean's response to tidal forces.
In 1997, a consortium of helioseismologists was formed with the simple goal of detecting g modes. Helioseismologists belonging to the SOHO consortia and to ground-based networks were teaming together for that goal. This consortium of helioseismologists was named the Phoebus group after Gaston Phoebus, Comte de Foix, who wrote a book about hunting, hoping thereby to ‘catch’ a few g modes. The work focused on data analysis of SOHO instruments (VIRGO, MDI) and ground- based networks (BiSON, Global Oscillations Network Group); on probability and statistics; and on theoretical model prediction of g-mode amplitudes and frequencies. The group met at ESTEC, Noordwijk (The Netherlands) during a series of five workshops that were held on 3–7 November 1997 (1st), on 26–30 October 1998 (2nd), on 25–29 October 1999 (3rd), on 7–11 June 2001 (4th), on 17–21 June 2002 (5th).
The strike-slip fault system in the region has two branches in Haiti, the Septentrional-Oriente fault in the north and the Enriquillo- Plantain Garden fault in the south; both its location and focal mechanism suggested that the January 2010 quake was caused by a rupture of the Enriquillo-Plantain Garden fault, which had been locked for 250 years, gathering stress. However, a study published in May 2010 suggested that the rupture process may have involved slip on multiple blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillo–Plantain Garden fault zone, suggesting that the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. The rupture was roughly long with mean slip of . Preliminary analysis of the slip distribution found amplitudes of up to about using ground motion records from all over the world.
One can then evaluate the probability amplitude at the photon's final point; next, one can integrate over all of these arrows (see vector sum), and square the length of the result to obtain the probability that this photon will reflect off of the mirror in the pertinent fashion. The times these paths take are what determine the angle of the probability amplitude arrow, as they can be said to "spin" at a constant rate (which is related to the frequency of the photon). The times of the paths near the classical reflection site of the mirror are nearly the same, so the probability amplitudes point in nearly the same direction—thus, they have a sizable sum. Examining the paths towards the edges of the mirror reveals that the times of nearby paths are quite different from each other, and thus we wind up summing vectors that cancel out quickly.
Although, depending on the demands on timing accuracy, acceleration-based methods are more precise. Saccades may rotate the eyes in any direction to relocate gaze direction (the direction of sight that corresponds to the fovea), but normally saccades do not rotate the eyes torsionally. (Torsion is clockwise or counterclockwise rotation around the line of sight when the eye is at its central primary position; defined this way, Listing's law says that, when the head is motionless, torsion is kept at zero.) Head-fixed saccades can have amplitudes of up to 90° (from one edge of the oculomotor range to the other), but in normal conditions saccades are far smaller, and any shift of gaze larger than about 20° is accompanied by a head movement. During such gaze saccades, first the eye produces a saccade to get gaze on target, whereas the head follows more slowly and the vestibulo-ocular reflex (VOR) causes the eyes to roll back in the head to keep gaze on the target.
This is consistent with the fact that our eyes seem to be in the 'relaxed' state when focusing at infinity, and also explains why no amount of effort seems to enable a myopic person to see farther away. The ability to focus on near objects declines throughout life, from an accommodation of about 20 dioptres (ability to focus at 50 mm away) in a child, to 10 dioptres at age 25 (100 mm), and levels off at 0.5 to 1 dioptre at age 60 (ability to focus down to 1–2 meters only). The expected, maximum, and minimum amplitudes of accommodation in diopters (D) for a corrected patient of a given age can be estimated using Hofstetter's formulas: expected amplitude (D) = 18.5 - 0.3 × (age in years), maximum amplitude (D) = 25 - 0.4 × (age in years), minimum amplitude (D) = 15 - 0.25 × (age in years).Robert P. Rutstein, Kent M. Daum, Anomalies of Binocular Vision: Diagnosis & Management, Mosby, 1998.
All MUSIC-N derivative programs have a (more- or-less) common design, made up of a library of functions built around simple signal-processing and synthesis routines (written as opcodes or unit generators). These simple opcodes are then constructed by the user into an instrument (usually through a text-based instruction file, but increasingly through a graphical interface) that defines a sound which is then "played" by a second file (called the score) which specifies notes, durations, pitches, amplitudes, and other parameters relevant to the musical informatics of the piece. Some variants of the language merge the instrument and score, though most still distinguish between control-level functions (which operate on the music) and functions that run at the sampling rate of the audio being generated (which operate on the sound). A notable exception is ChucK, which unifies audio-rate and control-rate timing into a single framework, allowing arbitrarily fine time granularity and also one mechanism to manage both.
Variable stohiometries have been discussed but there are probably 2 KCNE1 subunits and 4 KCNQ1 subunits in a plasma membrane IKs complex. The transmembrane segment of KCNE1 is α-helical when in a membrane environment., The transmembrane segment of KCNE1 has been suggested to interact with the KCNQ1 pore domain (S5/S6) and with the S4 domain of the KCNQ1 (KvLQT1) channel. KCNE1 may bind to the outer part of the KCNQ1 pore domain, and slide from this position into the “activation cleft” which leads to greater current amplitudes KCNE1 slows KCNQ1 activation several-fold, and there are ongoing discussions about the precise mechanisms underlying this. In a study in which KCNQ1 voltage sensor movement was monitored by site-directed fluorimetry and also by measuring the charge displacement associated with movement of charges within the S4 segment of the voltage sensor (gating current), KCNE1 was found to slow S4 movement so much that the gating current was no longer measurable.
These studies have provided insight into conditions characterized by changes in resting potential, such as electrolyte concentration and pH, as well as specific ion-channel and pump function in normal and diseased nerves. Furthermore, software programs enabling the calculation of rheobasic and time constant values from both normal and diseased nerves have recently enabled researchers to pinpoint some important factors for a number of pervasive nerve disorders, many of which involve substantial demyelination (see Clinical Significance). Supraximal electrical stimulation and measurement of conduction velocity and amplitudes of compound motor (CMAP) and sensory (SNAP) responses provide measures of the number and conduction velocities of large myelinated fibers. Additionally, multiple measures of excitability in the TROND protocol permit assessment of ion channels (transient and persistent Na+ channels, slow K+ channels) at nodes of Ranvier by computing stimulus response curves, strength duration time constant (chronaxie), rheobase, and the recovery cycle after passage of an action potential.
Intermodulation occurs when the input to a non-linear system is composed of two or more frequencies. Consider an input signal that contains three frequency components at~f_a, ~ f_b, and ~f_c; which may be expressed as :\ x(t) = M_a \sin(2 \pi f_a t + \phi_a) + M_b \sin(2 \pi f_b t + \phi_b) + M_c \sin(2 \pi f_c t + \phi_c) where the \ M and \ \phi are the amplitudes and phases of the three components, respectively. We obtain our output signal, \ y(t), by passing our input through a non-linear function G: :\ y(t) = G\left(x(t)\right)\, \ y(t) will contain the three frequencies of the input signal, ~f_a, ~ f_b, and ~f_c (which are known as the fundamental frequencies), as well as a number of linear combinations of the fundamental frequencies, each of the form :\ k_af_a + k_bf_b + k_cf_c where ~k_a, ~ k_b, and ~k_c are arbitrary integers which can assume positive or negative values. These are the intermodulation products (or IMPs).
Suppose, we start with one electron at a certain place and time (this place and time being given the arbitrary label A) and a photon at another place and time (given the label B). A typical question from a physical standpoint is: "What is the probability of finding an electron at C (another place and a later time) and a photon at D (yet another place and time)?". The simplest process to achieve this end is for the electron to move from A to C (an elementary action) and for the photon to move from B to D (another elementary action). From a knowledge of the probability amplitudes of each of these sub-processes – E(A to C) and P(B to D) – we would expect to calculate the probability amplitude of both happening together by multiplying them, using rule b) above. This gives a simple estimated overall probability amplitude, which is squared to give an estimated probability.
Giclas 29-38, also known as ZZ Piscium, is a variable white dwarf star of the DAV, or ZZ Ceti, whose variability is due to large-amplitude, non-radial pulsations, known as gravity waves. It was first reported to be variable by Shulov and Kopatskaya in 1974.O. S. Shulov and E. N. Kopatskaya, Astrofizika 10, #1 (January-March, 1974), pp. 117-120\. Translated into English as Variability of the white dwarf G 29-38, Astrophysics, 10, #1 (January, 1974), pp. 72-74\. DOI 10.1007/BF01005183.G 29-38 and G 38-29: two new large- amplitude variable white dwarfs, J. T. McGraw and E. L. Robinson, Astrophysical Journal 200 (September 1975), pp. L89-L93. DAV stars are like normal white dwarfs but have luminosity variations with amplitudes as high as 30%, arising from a superposition of vibrational modes with periods from 100 to 1,000 seconds. Large-amplitude DAVs generally differ from lower-amplitude DAVs by having lower temperatures, longer primary periodicities, and many peaks in their vibrational spectra with frequencies which are sums of other vibrational modes.
Retrieved 2013-04-11. and reduced the 256 envelope/volume levels down to 16 (and the 78 dB range down to 28 dB). TI added a pseudorandom number generator circuit which could be used to create white noise effects similar to what ALF had demonstrated on the AD8 synthesizer using random amplitudes, although TI probably intended it more for sound effects than for simulating percussion instruments. ALF designed a card with three SN76489N chips, thus allowing nine simultaneous voices (similar to three MC16 cards). The product was originally named "ALF's Apple Music II"ALF Products newsletter, 1980, ALF Alpha 2. Retrieved 2013-04-11. and was later renamed (at Apple's request) "Music Card MC1". Rather than starting at the same pitch as the lowest note on a piano (A0, the A below the C three octaves below Middle C) like the MC16, the MC1 started 15 semitones higher, at C2 (the C two octaves below middle C); and rather than having an 8-octave (96 semitone) range, it had a 6-octave (72 semitone) range.
ECRI today represents a third generation of cycle research, building on the work of ECRI's co-founder, Geoffrey H. Moore, and his mentors, Wesley C. Mitchell and Arthur F. Burns. 1920, Wesley C. Mitchell and his colleagues established the National Bureau of Economic Research (NBER), with a primary objective of investigating business cycles. 1927, Mitchell laid down the standard definition of business cycles: "Business cycles are a type of fluctuation found in the aggregate economic activity of nations that organize their work mainly in business enterprises: a cycle consists of expansions occurring at about the same time in many economic activities, followed by similarly general recessions, contractions, and revivals which merge into the expansion phase of the next cycle; this sequence of changes is recurrent but not periodic; in duration business cycles vary from more than one year to ten or twelve years; they are not divisible into shorter cycles of similar character with amplitudes approximating their own." 1929, with the start of the Great Depression, business cycle researchers had a practical emergency on their hands.
However, it is believed that CO2 clathrate might be of significant importance for planetology. CO2 is an abundant volatile on Mars. It dominates in the atmosphere and covers its polar ice caps much of the time. In the early seventies, the possible existence of CO2 hydrates on Mars was proposed. Recent consideration of the temperature and pressure of the regolith and of the thermally insulating properties of dry ice and CO2 clathrate suggested that dry ice, CO2 clathrate, liquid CO2, and carbonated groundwater are common phases, even at Martian temperatures. If CO2 hydrates are present in the Martian polar caps, as some authors suggest, then the polar cap can potentially melt at depth. Melting of the polar cap would not be possible if it was composed entirely of pure water ice (Mellon et al. 1996). This is because of the clathrate’s lower thermal conductivity, higher stability under pressure, and higher strength, as compared to pure water ice. The question of a possible diurnal and annual CO2 hydrate cycle on Mars remains, since the large temperature amplitudes observed there cause exiting and reentering the clathrate stability field on a daily and seasonal basis.
If the input function is a series of ordered pairs (for example, a time series from measuring an output variable repeatedly over a time interval) then the output function must also be a series of ordered pairs (for example, a complex number vs. frequency over a specified domain of frequencies), unless certain assumptions and approximations are made allowing the output function to be approximated by a closed-form expression. In the general case where the available input series of ordered pairs are assumed be samples representing a continuous function over an interval (amplitude vs. time, for example), the series of ordered pairs representing the desired output function can be obtained by numerical integration of the input data over the available interval at each value of the Fourier conjugate variable (frequency, for example) for which the value of the Fourier transform is desired.. Explicit numerical integration over the ordered pairs can yield the Fourier transform output value for any desired value of the conjugate Fourier transform variable (frequency, for example), so that a spectrum can be produced at any desired step size and over any desired variable range for accurate determination of amplitudes, frequencies, and phases corresponding to isolated peaks.
Examples of correlation between RCI and other methods of measuring motional amplitudes in proteins. NMR RMSD - root mean square fluctuations of atomic coordinates in NMR ensembles, MD RMSD - root mean square fluctuations of atomic coordinates in MD ensembles, S2 - model-free order parameter, RCI - random coil index, B-factor - temperature factor of X-ray structures; RCI->NMR RMSD - root mean square fluctuations of atomic coordinates in NMR ensembles predicted from RCI, RCI->MD RMSD - root mean square fluctuations of atomic coordinates in MD ensembles predicted from RCI, RCI->S2 - model-free order parameter predicted from RCI, RCI->B-factor - temperature factor of X-ray structures predicted from RCI. Random coil index (RCI) predicts protein flexibility by calculating an inverse weighted average of backbone secondary chemical shifts and predicting values of model-free order parameters as well as per-residue RMSD of NMR and molecular dynamics ensembles from this parameter. The key advantages of this protocol over existing methods of studying protein flexibility are # it does not require prior knowledge of a protein's tertiary structure, # it is not sensitive to the protein's overall tumbling and # it does not require additional NMR measurements beyond the standard experiments for backbone assignments.

No results under this filter, show 779 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.