Sentences Generator
And
Your saved sentences

No sentences have been saved yet

54 Sentences With "aerobes"

How to use aerobes in a sentence? Find typical usage patterns (collocations)/phrases/context for "aerobes" and check conjugation/comparative form for "aerobes". Mastering all the usages of "aerobes" from sentence examples published by news publications.

With the exception of the yeasts, most fungi are obligate aerobes. Also, almost all algae are obligate aerobes.
They form grape-like structures. The various gram- positive cocci differ physiologically and by habitat. Micrococcus spp. are obligate aerobes that inhabit human skin.
Microbial synergy is a phenomenon in which aerobic and anaerobic microbes support each other's growth and proliferation. In this process aerobes invade and destroy host tissues, reduce tissue oxygen concentration and redox potential, thus creating favorable conditions for anaerobic growth and proliferation. Anaerobes grow and produce short chain fatty acids such as butyric acid, propionic acid. These short chain fatty acids inhibit phagocytosis of aerobes.
Myxococcus is a genus in the family Myxococcaceae. Myxococci are Gram- negative, spore-forming, chemoorganotrophic, obligate aerobes. They are elongated rods with rounded or tapered ends, and they are nonflagellated.
The Oxalobacteraceae are a family of bacteria, included in the order Burkholderiales. Like all Proteobacteria, Oxalobacteraceae are Gram-negative. The family includes strict aerobes, strict anaerobes, and nitrogen-fixing (diazotrophic) members. The cells are curved, vibroid, or straight rod- shaped.
The type order is the Hydrogenophilales. The Acidithiobacillia contain only sulfur, iron, and uranium-oxidising autotrophs. The type order is the Acidithiobacillales, which includes economically important organisms used in the mining industry such as Acidithiobacillus spp. The Oligoflexia are filamentous aerobes.
The group is typically divided into the Clostridia, which are anaerobic, and the Bacilli, which are obligate or facultative aerobes. On phylogenetic trees, the first two groups show up as paraphyletic or polyphyletic, as do their main genera, Clostridium and Bacillus.
Bacteria can be aerobes or anaerobes. depending on the degree of oxygen required bacteria can fall into the following classes; 1.facultative- anaerobes-ie aerotolerant absence or minimal oxygen required for their growth 2.obligate-anaerobes grow only in complete absence of oxygen 3.
The Piscirickettsiaceae are a family of Proteobacteria. All species are aerobes found in water.George M. Garrity: Bergey's Manual of Systematic Bacteriology. 2. Auflage. Springer, New York, 2005, Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria The species Piscirickettsia salmonis is a fish pathogen and causes piscirickettsiosis in salmonid fishes.
These protists include strict aerobes, and use photosystems I and II in order to carry out photosynthesis which produces oxygen. Diagram of Plasmodium structure Mixotrophic protists obtain nutrients through organic and inorganic carbon compounds simultaneously. All cells have a plasma membrane. In a protist, the plasma membrane is also known as the plasmalemma.
They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm2 surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens.
All species and strains of Pseudomonas have historically been classified as strict aerobes. Exceptions to this classification have recently been discovered in Pseudomonas biofilms. A significant number of cells can produce exopolysaccharides associated with biofilm formation. Secretion of exopolysaccharides such as alginate makes it difficult for pseudomonads to be phagocytosed by mammalian white blood cells.
Thus aerobes grow, proliferate and destroy more tissues. Microbial synergy complicates and delays the healing of surgical and other chronic wounds or ulcers such as diabetic foot ulcers, venous ulcers, pressure ulcers etc. Microbial synergy also helps with eliminating oxygen redox. This allows the growth of organisms without the effects of oxygen reacting negatively.
This allows the differentiation of obligate aerobes, obligate anaerobes, facultative anaerobes, microaerophiles, and aerotolerant organisms. For example, obligately anaerobic Clostridium species will be seen growing only in the bottom of the test tube. Thioglycolate broth is also used to recruit macrophages to the peritoneal cavity of mice when injected intraperitoneally. It recruits numerous macrophages, but does not activate them.
There is strong evidence that it is more effective than povidone-iodine. CHG is active against Gram-positive and Gram- negative organisms, facultative anaerobes, aerobes, and yeasts. It is particularly effective against Gram-positive bacteria (in concentrations ≥ 1 μg/l). Significantly higher concentrations (10 to more than 73 μg/ml) are required for Gram-negative bacteria and fungi.
The optimal pH for growth of Leptospira is 7.2–7.6. Leptospira are aerobes whose major carbon and energy source during in vitro growth is long- chain fatty acids, which are metabolized by beta-oxidation. Fatty acids are provided in EMJH in the form of Tween. Fatty acid molecules are bound by albumin in EMJH and are released slowly into the medium to prevent its toxic accumulation.
They do not utilize oxygen, but they can protect themselves from reactive oxygen molecules. In contrast, obligate anaerobes can be harmed by reactive oxygen molecules. There are three categories of anaerobes. Where obligate aerobes require oxygen to grow, obligate anaerobes are damaged by oxygen, aerotolerant organisms cannot use oxygen but tolerate its presence, and facultative anaerobes use oxygen if it is present but can grow without it.
The majority of Acidobacteria are considered aerobes. There are some Acidobacteria that are considered anaerobes within subdivision 8 and subdivision 23. It has been found that some strains of Acidobacteria originating from soils have the genomic potential to respire oxygen at atmospheric and sub-atmospheric concentrations. Members of the Acidobacteria phylum have been considered oligotrophic bacteria due to high abundances in low organic carbon environments.
In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular (e.g. protozoans, bacteria) or multicellular. Most fungi are obligate aerobes, requiring oxygen to survive, however some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen will disrupt their metabolism or kill them.
Encyclopedia of Earth. eds. Sidney Draggan and C.J.Cleveland, National Council for Science and the Environment, Washington DC The genus is named after Theodor Escherich, the discoverer of Escherichia coli. Escherichia are facultative aerobes, with both aerobic and anaerobic growth, and an optimum temperature of 37 °C. Escherichia are usually motile by flagella, produce gas from fermentable carbohydrates, and do not decarboxylate lysine or hydrolyze arginine .
Its optimal pH range is 6.5 – 9.0. While most of the organisms in the Roseobacter clade are obligate aerobes, D. shibae is able to grow anaerobically using electron acceptors nitrate and dimethyl sulfoxide. It has a complete denitrification pathway for energy production. A variety of organic substrates including acetate, succinate, fumarate, malate, lactate, citrate, glutamate, pyruvate, glucose, fructose and glycerol can support heterotrophic growth.
Francisella is a genus of pathogenic, Gram-negative bacteria. They are small coccobacillary or rod-shaped, nonmotile organisms, which are also facultative intracellular parasites of macrophages. Strict aerobes, Francisella colonies bear a morphological resemblance to those of the genus Brucella. The genus was named in honor of American bacteriologist Edward Francis, who, in 1922, first recognized F. tularensis (then named Bacterium tularensis) as the causative agent of tularemia.
Halobacteria can exist in salty environments because although they are aerobes they have a separate and different way of creating energy through photosynthesis. Parts of the membranes of halobacteria are purplish in color. These parts conduct photosynthetic reactions with retinal pigment rather than chlorophyll. This allows them to create a proton gradient across the membrane of the cell which can be used to create ATP for their own use.
Virgibacillus is a genus of Gram-positive, rod-shaped (bacillus) bacteria and a member of the phylum Firmicutes. Virgibacillus species can be obligate aerobes (oxygen reliant), or facultative anaerobes and catalase enzyme positive. Under stressful environmental conditions, the bacteria can produce oval or ellipsoidal endospores in terminal, or sometimes subterminal, swollen sporangia. The genus was recently reclassified from the genus Bacillus in 1998 following an analysis of the species V. pantothenticus.
Aerobic anoxygenic phototrophic bacteria (AAPBs) are alphaproteobacteria and gammaproteobacteria that are obligate aerobes that capture energy from light by anoxygenic photosynthesis. Anoxygenic photosynthesis is the phototrophic process where light energy is captured and stored as ATP. The production of oxygen is non-existent and, therefore, water is not used as an electron donor. They are widely distributed marine plankton that may constitute over 10% of the open ocean microbial community.
The first studies of subsurface life were conducted by Claude E. Zobell, the "father of marine microbiology", in the late 1930s to the 1950s. Although the coring depth was limited, microbes were found wherever the sediments were sampled. With increasing depth, aerobes gave way to anaerobes. Alvin taken in 1969 Most biologists dismissed the subsurface microbes as contamination, especially after the submersible Alvin sank in 1968 and the scientists escaped, leaving their lunches behind.
The Snottites in the toxic sulfur cave Cueva de Villa Luz flourish on Hydrogen Sulfide gas and though some are aerobes (though only needing low levels of oxygen), some of these species (e.g. Acidianus), like those that live around hydrothermal vents, are able to survive independent of a source of oxygen. So the caves may give insight into subsurface thermal systems on Mars, where caves similar to the Cueva de Villa Luz could occur.
While aerobic organisms during respiration use oxygen as a terminal electron acceptor, anaerobic organisms use other electron acceptors. These inorganic compounds have a lower reduction potential than oxygen, meaning that respiration is less efficient in these organisms and leads to slower growth rates than aerobes. Many facultative anaerobes can use either oxygen or alternative terminal electron acceptors for respiration depending on the environmental conditions. Most respiring anaerobes are heterotrophs, although some do live autotrophically.
Scott's method involved inoculating blood into two rubber-sealed glass bottles, one for aerobes and one for anaerobes. The aerobic bottle contained trypticase soy broth and an agar slant, and the anaerobic bottle contained thioglycollate broth. The lysis-centrifugation method was introduced in 1917 by Mildred Clough, but it was rarely used in clinical practice until commercial systems were developed in the mid-1970s.TeKippe, EM & Pence, MA. Chapter 3 in Dunne, WM & Burnham, CAD eds. (2018). sec.
Anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
Hydrogen oxidizing bacteria are a group of facultative autotrophs that can use hydrogen as an electron donor. They can be divided into aerobes and anaerobes. The former use hydrogen as an electron donor and oxygen as an acceptor while the latter use sulphate or nitrogen dioxide as electron acceptors. Some species of both bacteria types have been isolated in different environments, for example in fresh waters, sediments, soils, activated sludge, hot springs, hydrothermal vents and percolating water.
Anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
Yeasts are chemoorganotrophs, as they use organic compounds as a source of energy and do not require sunlight to grow. Carbon is obtained mostly from hexose sugars, such as glucose and fructose, or disaccharides such as sucrose and maltose. Some species can metabolize pentose sugars such as ribose, alcohols, and organic acids. Yeast species either require oxygen for aerobic cellular respiration (obligate aerobes) or are anaerobic, but also have aerobic methods of energy production (facultative anaerobes).
In 1976, Robert A. Zakharyan reported the presence of a plasmid in a strain of B. thuringiensis and suggested the plasmid's involvement in endospore and crystal formation. B. thuringiensis is closely related to B. cereus, a soil bacterium, and B. anthracis, the cause of anthrax; the three organisms differ mainly in their plasmids. Like other members of the genus, all three are aerobes capable of producing endospores. Tubulin was long thought to be specific to eukaryotes.
Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
As an autotrophic bacterium, A. thiooxidans uses inorganic substances to fulfill its energy requirement, and atmospheric carbon to satisfy its carbon demands. Because A. thiooxidans derives its energy from inorganic elemental sulfur, carbon directly from the atmosphere, and nitrogen from ammonium sulfate and other inorganic salts, and also because of its small mineral requirements, this autotrophic microorganism was likely among the first aerobes contributing to weathering through the formation of sulfuric acid, which interacted with insoluble phosphates, carbonates, and silicates.
Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
Euryarchaeota (Greek for "broad old quality") is a phylum of archaea. It is one of two phyla of archaea, the other being crenarchaeota. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.
Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycolate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycolate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the tube where the oxygen concentration is highest. 2: Obligate anaerobes are poisoned by oxygen, so they gather at the bottom of the tube where the oxygen concentration is lowest. 3: Facultative anaerobes can grow with or without oxygen because they can metabolise energy aerobically or anaerobically.
Low O2 and high CO2 concentrations in packages are effective in limiting the growth of Gram negative bacteria, molds and aerobic microorganisms, such as Pseudomonas spp. High O2 combined with high CO2 could have bacteriostatic and bactericidal effects by suppression of aerobes by high CO2 and anaerobes by high O2. CO2 has the ability to penetrate bacterial membrane and affect intracellular pH. Therefore, lag phase and generation time of spoilage microorganisms are increased resulting in shelf life extension of refrigerated foods.
In vitro studies have shown that omadacycline has activity against a broad range of Gram-positive and select Gram-negative pathogens. Omadacycline has potent in vitro activity against Gram-positive aerobic bacteria including methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant and multi-drug resistant Streptococcus pneumoniae, and vancomycin-resistant Enterococcus. Omadacycline also has antimicrobial activity against common Gram-negative aerobes, some anaerobes, and atypical bacteria such as Legionella and Chlamydia. This activity translated to potent efficacy for omadacycline in an in vivo systemic infection model in mice.
This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport; however, and halobacteria are incapable of fixing carbon from carbon dioxide. Halobacteria can exist in salty environments because although they are aerobes, they have a separate and different way of creating energy through use of light energy.
Nocardia colonies have a variable appearance, but most species appear to have aerial hyphae when viewed with a dissecting microscope, particularly when they have been grown on nutritionally limiting media. Nocardia grow slowly on nonselective culture media, and are strict aerobes with the ability to grow in a wide temperature range. Some species are partially acid-fast (meaning a less concentrated solution of sulfuric or hydrochloric acid should be used during the staining procedure) due to the presence of intermediate-length mycolic acids in their cell wall. Majority of strains possess the cord factor (trehalose 6-6' dimycolate), an important virulence factor.
Shewanella putrefaciens is a Gram-negative pleomorphic bacterium. It has been isolated from marine environments, as well as from anaerobic sandstone in the Morrison Formation in New Mexico. S. putrefaciens is also a facultative anaerobe with the ability to reduce iron and manganese metabolically; that is, it can use iron and manganese as the terminal electron acceptor in the electron transport chain (in contrast to obligate aerobes which must use oxygen for this purpose). It is also one of the organisms associated with the odor of rotting fish, as it is a marine organism which produces trimethylamine (hence the species name putrefaciens, from putrid).
Mixed infections, due to both aerobes and anaerobes, are commonly associated with this type of cellulitis. Typically, this includes alpha- hemolytic streptococci, staphylococci, and bacteroides' groups. Predisposing conditions for cellulitis include an insect or spider bite, blistering, an animal bite, tattoos, pruritic (itchy) skin rash, recent surgery, athlete's foot, dry skin, eczema, injecting drugs (especially subcutaneous or intramuscular injection or where an attempted intravenous injection "misses" or blows the vein), pregnancy, diabetes, and obesity, which can affect circulation, as well as burns and boils, though debate exists as to whether minor foot lesions contribute. Occurrences of cellulitis may also be associated with the rare condition hidradenitis suppurativa or dissecting cellulitis.
Gas vesicles occur primarily in aquatic organisms as they are used to modulate the cell's buoyancy and modify the cell's position in the water column so it can be optimally located for photosynthesis or move to locations with more or less oxygen. Organisms that could float to the air–liquid interface out competes other aerobes that cannot rise in a water column, through using up oxygen in the top layer. In addition, gas vesicles can be used to maintain optimum salinity by positioning the organism in specific locations in a stratified body of water to prevent osmotic shock. High concentrations of solute will cause water to be drawn out of the cell by osmosis, causing cell lysis.
Litschgi found, that the incidence of mixed bacterial infections characterized by the presence of G. vaginalis, haemolytic Streptococci and Staphylococci was reduced by two-thirds four weeks after finishing therapy in 120 patients treated for bacterial colpitis. He observed a similar reduction of the less frequent Klebsiella, Proteus-dominant infections. A quantitative bacteriological analysis has been performed by Milovanović and coworkers in a goup of 36 trichomoniasis patients. The study aimed at quantifying locally unusual and mostly pathogenic organisms, whereby anaerobes were excluded for methodological reasons. Bacterial counts of aerobes excluding lactobacilli reportedly dropped from 18,900 organisms per 0.1 ml vaginal secretion on the day of the first SolcoTrichovac injection to 5800 organisms 112 days thereafter.
Bacteria analysis is typically conducted following ASTM method F1094.ASTM F1094 Standard Test Methods for Microbiological Monitoring of Water Used for Processing Electron and Microelectronic Devices by Direct Pressure Tap Sampling Valve and by the Presterilized Plastic Bag Method The test method covers sampling and analysis of high purity water from water purification systems and water transmission systems by the direct sampling tap and filtration of the sample collected in the bag. These test methods cover both the sampling of water lines and the subsequent microbiological analysis of the sample by the culture technique. The microorganisms recovered from the water samples and counted on the filters include both aerobes and facultative anaerobes.
Biochemically, ammonia oxidation occurs by the stepwise oxidation of ammonia to hydroxylamine () by the enzyme ammonia monooxygenase in the cytoplasm, followed by the oxidation of hydroxylamine to nitrite by the enzyme hydroxylamine oxidoreductase in the periplasm. Electron and proton cycling are very complex but as a net result only one proton is translocated across the membrane per molecule of ammonia oxidized. Nitrite oxidation is much simpler, with nitrite being oxidized by the enzyme nitrite oxidoreductase coupled to proton translocation by a very short electron transport chain, again leading to very low growth rates for these organisms. Oxygen is required in both ammonia and nitrite oxidation, meaning that both nitrosifying and nitrite-oxidizing bacteria are aerobes.
Methanotrophs are a specific type of methylotroph that are also able to use methane () as a carbon source by oxidizing it sequentially to methanol (), formaldehyde (), formate (), and carbon dioxide initially using the enzyme methane monooxygenase. As oxygen is required for this process, all (conventional) methanotrophs are obligate aerobes. Reducing power in the form of quinones and NADH is produced during these oxidations to produce a proton motive force and therefore ATP generation. Methylotrophs and methanotrophs are not considered as autotrophic, because they are able to incorporate some of the oxidized methane (or other metabolites) into cellular carbon before it is completely oxidized to (at the level of formaldehyde), using either the serine pathway (Methylosinus, Methylocystis) or the ribulose monophosphate pathway (Methylococcus), depending on the species of methylotroph.
AMP does not have the high energy phosphoanhydride bond associated with ADP and ATP. AMP can be produced from ADP: : 2 ADP → ATP + AMP Or AMP may be produced by the hydrolysis of one high energy phosphate bond of ADP: : ADP + H2O → AMP + Pi AMP can also be formed by hydrolysis of ATP into AMP and pyrophosphate: : ATP + H2O → AMP + PPi When RNA is broken down by living systems, nucleoside monophosphates, including adenosine monophosphate, are formed. AMP can be regenerated to ATP as follows: : AMP + ATP → 2 ADP (adenylate kinase in the opposite direction) : ADP + Pi → ATP (this step is most often performed in aerobes by the ATP synthase during oxidative phosphorylation) AMP can be converted into IMP by the enzyme myoadenylate deaminase, freeing an ammonia group. In a catabolic pathway, adenosine monophosphate can be converted to uric acid, which is excreted from the body in mammals.
Pyrococcus furiosus, one of the few modern organisms in which the incorporation of tungsten is still essential Tungsten is one of the oldest metal ions to be incorporated in biological systems, preceding the Great Oxygenation Event. Before the abundance of oxygen in Earth's atmosphere, oceans teemed with sulfur and tungsten, while molybdenum, a metal that is highly similar chemically, was inaccessible in solid form. The abundance of tungsten and lack of free molybdenum likely explains why early marine organisms incorporated the former instead of the latter. However, as cyanobacteria began to fill the atmosphere with oxygen, molybdenum became available (molybdenum becomes soluble when exposed to oxygen) and molybdenum began to replace tungsten in the majority of metabolic processes, which is seen today, as tungsten is only present in the biological complexes of prokaryotes (methanogens, gram-positive bacteria, gram-negative aerobes and anaerobes), and is only obligated in hyperthermophilic archaea such as P. furiosus.

No results under this filter, show 54 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.