Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"acidifies" Antonyms

29 Sentences With "acidifies"

How to use acidifies in a sentence? Find typical usage patterns (collocations)/phrases/context for "acidifies" and check conjugation/comparative form for "acidifies". Mastering all the usages of "acidifies" from sentence examples published by news publications.

Burning coal also acidifies the rain, poisoning our lakes and rivers.
That causes chemical reactions in the water that acidifies the sea.
Over months or years inside a wooden barrel, the microbial melange slowly devours sugar and acidifies the beer.
How the ocean acidifies The ocean is acidifying because it's absorbing more carbon dioxide from the atmosphere, which lowers pH levels in the water.
Again, that spares us from worse warming, but it creates its own chemical effects: salt water acidifies when it's exposed to more carbon dioxide.
Carbon pollution not only degrades air quality, it damages the health of the American public, leads to coastal erosion that threatens entire communities, acidifies the ocean, and increases the risk of deadly weather such as the drought, flooding and violent storms.
According to a study published this week in PNAS , this sets off a feedback loop that acidifies the ocean even more quickly, a process that is already killing off foundational marine life species such as coral and threatening the balance of all ocean ecosystems on which we depend.
"Huge swaths of the world will be living in places that by the end of the century will have heat waves so deep that people won't be able to deal with them, you have sea level rising dramatically, to the point that most of the world's cities are drowning, the ocean turning into a hot, sour, breathless soup as it acidifies and warms," McKibben said.
Most calcium ammonium nitrate is used as a fertilizer. Fertilizer grade CAN contains roughly 8% calcium and 21-27% nitrogen. CAN is preferred for use on acid soils, as it acidifies soil less than many common nitrogen fertilizers. It is also used in place of ammonium nitrate where ammonium nitrate is banned.
Water then follows sodium and chloride by osmosis. In Conn syndrome, these actions cause increased extracellular sodium and fluid volume and reduced extracellular potassium. Aldosterone also acts on intercalated cells to stimulate an apical proton ATPase, causing proton secretion that acidifies urine and alkalizes extracellular fluid. In summary, hyperaldosteronism causes hypernatremia, hypokalemia, and metabolic alkalosis.
Calcium formate is used within EU as an animal feed preservative. It acidifies the feed thus preventing microbe growth and increasing shelf life. About 15 g of calcium formate addition per kg of feed lowers its pH by one. 15 g/kg is the maximum recommended feed concentration within EU – this level is thought to be safe for pigs, chickens, fish and ruminants.
ATP6V0A2 is primarily found within the medial-Golgi and the trans-Golgi. ATP6V0A2 acidifies the medial- and trans-Golgi so that their resident enzymes (e.g. glycosidases and glycosyltransferases) function properly. Therefore, mutations in the ATP6V0A2 gene reduce the ability of ATP6V0A2 to produce the necessary pH gradient for these glycosylation enzymes, which results in abnormal N- and O-linked glycosylation.
Diets in Western nations typically contain a large proportion of animal protein. Eating animal protein creates an acid load that increases urinary excretion of calcium and uric acid and reduced citrate. Urinary excretion of excess sulfurous amino acids (e.g., cysteine and methionine), uric acid, and other acidic metabolites from animal protein acidifies the urine, which promotes the formation of kidney stones.
As muscles contract during tonic-clonic seizures they outpace oxygen supplies and go into anaerobic metabolism. With continued contractions under anaerobic conditions, the cells undergo lactic acidosis, or the production of lactic acid as a metabolic byproduct. This acidifies the blood (higher H+ concentration, lower pH), which has many impacts on the brain. For one, “hydrogen ions compete with other ions at the ion channel associated with N-methyl-d-aspartate (NMDA).
As food production in Peru increases, farmers saturate the soil with nutrients with Nitrogen and Phosphorus bases. Oversaturation of nutrients leads to eutrophication in nearby water bodies resulting in dead zones. Carbon emissions due to manufacturing and food processing leads to reduced air quality which contributes to the global warming that increases severity of natural disasters and acidifies the ocean leading to mass bleaching in coral reefs which will destroy oceanic ecosystems.
DL-Methionine is sometimes given as a supplement to dogs; It helps reduce the chances of kidney stones in dogs. Methionine is also known to increase the urinary excretion of quinidine by acidifying the urine. Aminoglycoside antibiotics used to treat urinary tract infections work best in alkaline conditions, and urinary acidification from using methionine can reduce its effectiveness. If a dog is on a diet that acidifies the urine, methionine should not be used.
V-ATPases are found within the membranes of many organelles, such as endosomes, lysosomes, and secretory vesicles, where they play a variety of roles crucial for the function of these organelles. For example, the proton gradient across the yeast vacuolar membrane generated by V-ATPases drives calcium uptake into the vacuole through an antiporter system. In synaptic transmission in neuronal cells, V-ATPase acidifies synaptic vesicles. Norepinephrine enters vesicles by V-ATPase.
The reaction mechanism of allylic C-H acetoxylation has been studied. The first step in the catalytic cycle is cleavage of the allylic C-H bond. The sulfoxide ligand is thought to promote this step by generating a highly electrophilic, possibly cationic palladium species in situ. This species coordinates to the alkene and acidifies the adjacent C-H bond, which allows acetate to abstract the proton and forms a π-allyl palladium complex (II).
This oxidation relies on a combination of chemically and microbiologically catalyzed processes. Two electron acceptors can influence this process: O2 and Fe3+ ions. The latter will only be present in significant amounts in acidic conditions (pH < 2.5). First a slow chemical process with O2 as electron acceptor will initiate the oxidation of pyrite: :FeS2 \+ 7/2 O2 \+ H2O → Fe2+ \+ 2 SO42− \+ 2 H+ This reaction acidifies the environment and the Fe2+ will be formed is rather stable.
Carbonate ions (CO₃²⁻) are essential in marine calcifying organisms, like plankton and shellfish, as they are required to produce their calcium carbonate (CaCO₃) shells and skeletons. As the ocean acidifies, the increased uptake of CO2 by seawater increases the concentration of hydrogen ions, which lowers the pH of the water. This change in the chemical equilibrium of the inorganic carbon system reduces the concentration of these carbonate ions. This reduces the ability of these organisms to create their shells and skeletons.
Diagram of protein translocation. Several recent studies demonstrate how the PA63 pore allows the EF and LF into the cytoplasm when its lumen is so small. The lumen on the PA63 pore is only 15 Å (1.5 nm) across, which is much smaller than the diameter of LF or EF. Translocation occurs through a series of events which begin in the endosome as it acidifies. LF and EF are pH sensitive, and as the pH drops, their structures lose stability.
Reason for that was the weather. The previous 3 years have been rainy which resulted in the ground being completely sodden, so there was a possibility of the festival not being held for the next 2 to 3 years so the ground could regenerate. The consequences of the mud in 2010, were that the grass only could spear sparsely which is why the soil was then even more in danger. The wood chips which were spread out in front of all the stages also massively acidifies the soil.
Na+/K+ATPase Transmembrane ATPases import many of the metabolites necessary for cell metabolism and export toxins, wastes, and solutes that can hinder cellular processes. An important example is the sodium-potassium exchanger (or Na+/K+ATPase) that maintains the cell membrane potential. And another example is the hydrogen potassium ATPase (H+/K+ATPase or gastric proton pump) that acidifies the contents of the stomach. ATPase is genetically conserved in animals; therefore, cardenolides which are toxic steroids produced by plants that act on ATPases, make general and effective animal toxins that act dose dependently.
Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death. Bafilomycin A1 specifically targets the vacuolar-type H+ -ATPase (V-ATPase) enzyme, a membrane spanning proton pump that acidifies either the extracellular environment or intracellular organelles such as the lysosome. At higher micromolar concentrations, Bafilomycin A1 also acts on P-type ATPases, which have a phosphorylated transitional state. Bafilomycin A1 serves as an important tool compound in many in vitro research applications; however, its clinical use is limited by a substantial toxicity profile.
As the vesicle moves farther into the cell, it acidifies, activating a portion of the toxin that triggers it to push across the vesicle membrane and into the cell cytoplasm. Once inside the cytoplasm, the toxin cleaves SNARE proteins (proteins that mediate vesicle fusion, with their target membrane bound compartments) meaning that the acetylcholine vesicles cannot bind to the intracellular cell membrane, preventing the cell from releasing vesicles of neurotransmitter. This stops nerve signaling, leading to paralysis. The toxin itself is released from the bacterium as a single chain, then becomes activated when cleaved by its own proteases.
Trapping of the cationic compound also draws water into the lysosome through an osmotic effect, which can sometimes lead to vacuolization seen in in vitro cultured cells. Diagram showing how protonation of weak bases like chloroquine in the acidic environment of the lysosome results in ion trapping, or accumulation of the weak base in the lysosome. Bafilomycin inhibits this trapping through its action on V-ATPase, which normally acidifies the lysosome. When one of these drugs is co-applied to cells with bafilomycin A1, the action of bafilomycin A1 prevents the acidification of the lysosome, therefore preventing the phenomenon of ion trapping in this compartment.
The active form consists of a two-chain protein composed of a 100-kDa heavy chain polypeptide joined via disulfide bond to a 50-kDa light chain polypeptide. The heavy chain contains domains with several functions; it has the domain responsible for binding specifically to presynaptic nerve terminals, as well as the domain responsible for mediating translocation of the light chain into the cell cytoplasm as the vacuole acidifies. The light chain is a M27-family zinc metalloprotease and is the active part of the toxin. It is translocated into the host cell cytoplasm where it cleaves the host protein SNAP-25, a member of the SNARE protein family, which is responsible for fusion.
In the bloodstream, the bacteria can infect both phagocytes and nonphagocytes. B. pseudomallei uses flagella to move near host cells, then attaches to the cells using various adhesion proteins, including the type IV pilus protein PilA and adhesion proteins BoaA and BoaB. Additionally, adhesion of the bacteria partially depends on the presence of the host protein protease-activated receptor-1, which is present on the surface of endothelial cells, platelets, and monocytes. Once bound, the bacteria enter host cells through endocytosis, ending up inside an endocytic vesicle. As the vesicle acidifies, B. pseudomallei uses its type 3 secretion system (T3SS) to inject effector proteins into the host cell, disrupting the vesicle and allowing the bacteria to escape into the host cytoplasm.
It seems that Listeria originally evolved to invade membranes of the intestines, as an intracellular infection, and developed a chemical mechanism to do so. This involves a bacterial protein internalin (InlA/InlB), which attaches to a protein on the intestinal cell membrane "cadherin" and allows the bacteria to invade the cells through a zipper mechanism. These adhesion molecules are also to be found in two other unusually tough barriers in humans — the blood-brain barrier and the fetal–placental barrier, and this may explain the apparent affinity that L. monocytogenes has for causing meningitis and affecting babies in utero. Once inside the cell, L. monocytogenes rapidly acidifies the lumen of the vacuole formed around it during cell entry to activate listeriolysin O, a cholesterol-dependent cytolysin capable of disrupting the vacuolar membrane.

No results under this filter, show 29 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.